Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docavalN Structured version   Visualization version   Unicode version

Theorem docavalN 36412
Description: Subspace orthocomplement for  DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j  |-  .\/  =  ( join `  K )
docaval.m  |-  ./\  =  ( meet `  K )
docaval.o  |-  ._|_  =  ( oc `  K )
docaval.h  |-  H  =  ( LHyp `  K
)
docaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
docaval.i  |-  I  =  ( ( DIsoA `  K
) `  W )
docaval.n  |-  N  =  ( ( ocA `  K
) `  W )
Assertion
Ref Expression
docavalN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  ( N `  X )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
Distinct variable groups:    z, K    z, I    z, W    z, T    z, X
Allowed substitution hints:    H( z)    .\/ ( z)    ./\ ( z)    N( z)    ._|_ ( z)

Proof of Theorem docavalN
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 docaval.j . . . . 5  |-  .\/  =  ( join `  K )
2 docaval.m . . . . 5  |-  ./\  =  ( meet `  K )
3 docaval.o . . . . 5  |-  ._|_  =  ( oc `  K )
4 docaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 docaval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 docaval.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
7 docaval.n . . . . 5  |-  N  =  ( ( ocA `  K
) `  W )
81, 2, 3, 4, 5, 6, 7docafvalN 36411 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  N  =  ( x  e.  ~P T  |->  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) ) )
98adantr 481 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  N  =  ( x  e.  ~P T  |->  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z } ) )  .\/  (  ._|_  `  W )
)  ./\  W )
) ) )
109fveq1d 6193 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  ( N `  X )  =  ( ( x  e.  ~P T  |->  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z } ) )  .\/  (  ._|_  `  W )
)  ./\  W )
) ) `  X
) )
11 fvex 6201 . . . . . . 7  |-  ( (
LTrn `  K ) `  W )  e.  _V
125, 11eqeltri 2697 . . . . . 6  |-  T  e. 
_V
1312elpw2 4828 . . . . 5  |-  ( X  e.  ~P T  <->  X  C_  T
)
1413biimpri 218 . . . 4  |-  ( X 
C_  T  ->  X  e.  ~P T )
1514adantl 482 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  X  e.  ~P T )
16 fvex 6201 . . 3  |-  ( I `
 ( ( ( 
._|_  `  ( `' I `  |^| { z  e. 
ran  I  |  X  C_  z } ) ) 
.\/  (  ._|_  `  W
) )  ./\  W
) )  e.  _V
17 sseq1 3626 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x  C_  z  <->  X  C_  z
) )
1817rabbidv 3189 . . . . . . . . . 10  |-  ( x  =  X  ->  { z  e.  ran  I  |  x  C_  z }  =  { z  e.  ran  I  |  X  C_  z } )
1918inteqd 4480 . . . . . . . . 9  |-  ( x  =  X  ->  |^| { z  e.  ran  I  |  x  C_  z }  =  |^| { z  e. 
ran  I  |  X  C_  z } )
2019fveq2d 6195 . . . . . . . 8  |-  ( x  =  X  ->  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
)  =  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z }
) )
2120fveq2d 6195 . . . . . . 7  |-  ( x  =  X  ->  (  ._|_  `  ( `' I `  |^| { z  e. 
ran  I  |  x 
C_  z } ) )  =  (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z } ) ) )
2221oveq1d 6665 . . . . . 6  |-  ( x  =  X  ->  (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) )  =  ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z } ) )  .\/  (  ._|_  `  W )
) )
2322oveq1d 6665 . . . . 5  |-  ( x  =  X  ->  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W )  =  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z } ) )  .\/  (  ._|_  `  W )
)  ./\  W )
)
2423fveq2d 6195 . . . 4  |-  ( x  =  X  ->  (
I `  ( (
(  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z } ) )  .\/  (  ._|_  `  W )
)  ./\  W )
) )
25 eqid 2622 . . . 4  |-  ( x  e.  ~P T  |->  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )  =  ( x  e.  ~P T  |->  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
2624, 25fvmptg 6280 . . 3  |-  ( ( X  e.  ~P T  /\  ( I `  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) )  e.  _V )  -> 
( ( x  e. 
~P T  |->  ( I `
 ( ( ( 
._|_  `  ( `' I `  |^| { z  e. 
ran  I  |  x 
C_  z } ) )  .\/  (  ._|_  `  W ) )  ./\  W ) ) ) `  X )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
2715, 16, 26sylancl 694 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  ( (
x  e.  ~P T  |->  ( I `  (
( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  x  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) ) `  X )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z } ) )  .\/  (  ._|_  `  W )
)  ./\  W )
) )
2810, 27eqtrd 2656 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  T
)  ->  ( N `  X )  =  ( I `  ( ( (  ._|_  `  ( `' I `  |^| { z  e.  ran  I  |  X  C_  z }
) )  .\/  (  ._|_  `  W ) ) 
./\  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   ` cfv 5888  (class class class)co 6650   occoc 15949   joincjn 16944   meetcmee 16945   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   ocAcocaN 36408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-docaN 36409
This theorem is referenced by:  docaclN  36413  diaocN  36414
  Copyright terms: Public domain W3C validator