MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomcld Structured version   Visualization version   GIF version

Theorem dprddomcld 18400
Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.)
Hypotheses
Ref Expression
dprddomcld.1 (𝜑𝐺dom DProd 𝑆)
dprddomcld.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprddomcld (𝜑𝐼 ∈ V)

Proof of Theorem dprddomcld
StepHypRef Expression
1 dprddomcld.2 . 2 (𝜑 → dom 𝑆 = 𝐼)
2 dprddomcld.1 . 2 (𝜑𝐺dom DProd 𝑆)
3 df-nel 2898 . . . . 5 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
4 dprddomprc 18399 . . . . 5 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
53, 4sylbir 225 . . . 4 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
65con4i 113 . . 3 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
7 eleq1 2689 . . 3 (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V))
86, 7syl5ib 234 . 2 (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆𝐼 ∈ V))
91, 2, 8sylc 65 1 (𝜑𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990  wnel 2897  Vcvv 3200   class class class wbr 4653  dom cdm 5114   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-oprab 6654  df-mpt2 6655  df-dprd 18394
This theorem is referenced by:  dprdcntz  18407  dprddisj  18408  dprdw  18409  dprdwd  18410  dprdfid  18416  dprdfinv  18418  dprdfadd  18419  dprdfsub  18420  dprdfeq0  18421  dprdf11  18422  dprdlub  18425  dprdres  18427  dprdss  18428  dprdf1o  18431  dmdprdsplitlem  18436  dprddisj2  18438  dmdprdsplit2  18445  dpjfval  18454  dpjidcl  18457
  Copyright terms: Public domain W3C validator