MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Structured version   Visualization version   GIF version

Theorem dprdfeq0 18421
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfeq0 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Distinct variable groups:   𝑥,,𝐹   ,𝑖,𝐺,𝑥   ,𝐼,𝑖,𝑥   𝜑,𝑥   0 ,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(𝑥,,𝑖)   0 (𝑖)

Proof of Theorem dprdfeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . 7 (𝜑𝐹𝑊)
5 eqid 2622 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 18411 . . . . . 6 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76feqmptd 6249 . . . . 5 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
87adantr 481 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
91, 2, 3, 4dprdfcl 18412 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
109adantlr 751 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
11 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
122ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
133ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 simpr 477 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑥𝐼)
15 eqid 2622 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))
1611, 1, 12, 13, 14, 10, 15dprdfid 18416 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥)))
1716simpld 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊)
184ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹𝑊)
19 eqid 2622 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
2011, 1, 12, 13, 17, 18, 19dprdfsub 18420 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹))))
2120simprd 479 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)))
222, 3dprddomcld 18400 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
2322ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐼 ∈ V)
24 fvex 6201 . . . . . . . . . . . . . 14 (𝐹𝑥) ∈ V
25 fvex 6201 . . . . . . . . . . . . . . 15 (0g𝐺) ∈ V
2611, 25eqeltri 2697 . . . . . . . . . . . . . 14 0 ∈ V
2724, 26ifex 4156 . . . . . . . . . . . . 13 if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V
2827a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V)
29 fvexd 6203 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ V)
30 eqidd 2623 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))
316ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹:𝐼⟶(Base‘𝐺))
3231feqmptd 6249 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹 = (𝑦𝐼 ↦ (𝐹𝑦)))
3323, 28, 29, 30, 32offval2 6914 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))))
3433oveq2d 6666 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹)) = (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
3516simprd 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥))
36 simplr 792 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg 𝐹) = 0 )
3735, 36oveq12d 6668 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = ((𝐹𝑥)(-g𝐺) 0 ))
38 dprdgrp 18404 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
3912, 38syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
4031, 14ffvelrnd 6360 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
415, 11, 19grpsubid1 17500 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4239, 40, 41syl2anc 693 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4337, 42eqtrd 2656 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = (𝐹𝑥))
4421, 34, 433eqtr3d 2664 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) = (𝐹𝑥))
45 eqid 2622 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
46 grpmnd 17429 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
472, 38, 463syl 18 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
4847ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
495subgacs 17629 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
50 acsmre 16313 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5139, 49, 503syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
52 imassrn 5477 . . . . . . . . . . . . . 14 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
532, 3dprdf2 18406 . . . . . . . . . . . . . . . . 17 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5453ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
55 frn 6053 . . . . . . . . . . . . . . . 16 (𝑆:𝐼⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
57 mresspw 16252 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5851, 57syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5956, 58sstrd 3613 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
6052, 59syl5ss 3614 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
61 sspwuni 4611 . . . . . . . . . . . . 13 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6260, 61sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
63 eqid 2622 . . . . . . . . . . . . 13 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6463mrccl 16271 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
6551, 62, 64syl2anc 693 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
66 subgsubm 17616 . . . . . . . . . . 11 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
6765, 66syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
68 oveq1 6657 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6968eleq1d 2686 . . . . . . . . . . . 12 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
70 oveq1 6657 . . . . . . . . . . . . 13 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ( 0 (-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
7170eleq1d 2686 . . . . . . . . . . . 12 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
72 simpr 477 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
7372fveq2d 6195 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
7473oveq2d 6666 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = ((𝐹𝑥)(-g𝐺)(𝐹𝑥)))
755, 11, 19grpsubid 17499 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7639, 40, 75syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7711subg0cl 17602 . . . . . . . . . . . . . . . 16 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7865, 77syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7976, 78eqeltrd 2701 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8079ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8174, 80eqeltrd 2701 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8265ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
8382, 77syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8451, 63, 62mrcssidd 16285 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8584ad2antrr 762 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
861, 12, 13, 18dprdfcl 18412 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
8786adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆𝑦))
88 ffn 6045 . . . . . . . . . . . . . . . . . 18 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
8954, 88syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆 Fn 𝐼)
9089ad2antrr 762 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼)
91 difssd 3738 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
92 df-ne 2795 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 ↔ ¬ 𝑦 = 𝑥)
93 eldifsn 4317 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
9493biimpri 218 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐼𝑦𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9592, 94sylan2br 493 . . . . . . . . . . . . . . . . 17 ((𝑦𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9695adantll 750 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
97 fnfvima 6496 . . . . . . . . . . . . . . . 16 ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9890, 91, 96, 97syl3anc 1326 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
99 elunii 4441 . . . . . . . . . . . . . . 15 (((𝐹𝑦) ∈ (𝑆𝑦) ∧ (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
10087, 98, 99syl2anc 693 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
10185, 100sseldd 3604 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10219subgsubcl 17605 . . . . . . . . . . . . 13 ((((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10382, 83, 101, 102syl3anc 1326 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10469, 71, 81, 103ifbothda 4123 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
105 eqid 2622 . . . . . . . . . . 11 (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
106104, 105fmptd 6385 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10720simpld 475 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘𝑓 (-g𝐺)𝐹) ∈ 𝑊)
10833, 107eqeltrrd 2702 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ∈ 𝑊)
1091, 12, 13, 108, 45dprdfcntz 18414 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
1101, 12, 13, 108dprdffsupp 18413 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) finSupp 0 )
11111, 45, 48, 23, 67, 106, 109, 110gsumzsubmcl 18318 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
11244, 111eqeltrrd 2702 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
11310, 112elind 3798 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
11412, 13, 14, 11, 63dprddisj 18408 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
115113, 114eleqtrd 2703 . . . . . 6 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ { 0 })
116 elsni 4194 . . . . . 6 ((𝐹𝑥) ∈ { 0 } → (𝐹𝑥) = 0 )
117115, 116syl 17 . . . . 5 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) = 0 )
118117mpteq2dva 4744 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥𝐼 ↦ (𝐹𝑥)) = (𝑥𝐼0 ))
1198, 118eqtrd 2656 . . 3 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼0 ))
120119ex 450 . 2 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
12111gsumz 17374 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
12247, 22, 121syl2anc 693 . . 3 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
123 oveq2 6658 . . . 4 (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐼0 )))
124123eqeq1d 2624 . . 3 (𝐹 = (𝑥𝐼0 ) → ((𝐺 Σg 𝐹) = 0 ↔ (𝐺 Σg (𝑥𝐼0 )) = 0 ))
125122, 124syl5ibrcom 237 . 2 (𝜑 → (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = 0 ))
126120, 125impbid 202 1 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Xcixp 7908   finSupp cfsupp 8275  Basecbs 15857  0gc0g 16100   Σg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Mndcmnd 17294  SubMndcsubmnd 17334  Grpcgrp 17422  -gcsg 17424  SubGrpcsubg 17588  Cntzccntz 17748   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-cmn 18195  df-dprd 18394
This theorem is referenced by:  dprdf11  18422
  Copyright terms: Public domain W3C validator