| Step | Hyp | Ref
| Expression |
| 1 | | eldprdi.w |
. . . . 5
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 2 | | eldprdi.1 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | eldprdi.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | | eldprdi.3 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 5 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | 1, 2, 3, 4, 5 | dprdff 18411 |
. . . 4
⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | | ffn 6045 |
. . . 4
⊢ (𝐹:𝐼⟶(Base‘𝐺) → 𝐹 Fn 𝐼) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐼) |
| 9 | | dprdf11.4 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| 10 | 1, 2, 3, 9, 5 | dprdff 18411 |
. . . 4
⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
| 11 | | ffn 6045 |
. . . 4
⊢ (𝐻:𝐼⟶(Base‘𝐺) → 𝐻 Fn 𝐼) |
| 12 | 10, 11 | syl 17 |
. . 3
⊢ (𝜑 → 𝐻 Fn 𝐼) |
| 13 | | eqfnfv 6311 |
. . 3
⊢ ((𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼) → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 14 | 8, 12, 13 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝐹 = 𝐻 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 15 | | eldprdi.0 |
. . . 4
⊢ 0 =
(0g‘𝐺) |
| 16 | | eqid 2622 |
. . . . . 6
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 17 | 15, 1, 2, 3, 4, 9, 16 | dprdfsub 18420 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∘𝑓
(-g‘𝐺)𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘𝑓
(-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)))) |
| 18 | 17 | simpld 475 |
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑓
(-g‘𝐺)𝐻) ∈ 𝑊) |
| 19 | 15, 1, 2, 3, 18 | dprdfeq0 18421 |
. . 3
⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘𝑓
(-g‘𝐺)𝐻)) = 0 ↔ (𝐹 ∘𝑓
(-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 20 | 17 | simprd 479 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘𝑓
(-g‘𝐺)𝐻)) = ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻))) |
| 21 | 20 | eqeq1d 2624 |
. . 3
⊢ (𝜑 → ((𝐺 Σg (𝐹 ∘𝑓
(-g‘𝐺)𝐻)) = 0 ↔ ((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 )) |
| 22 | 2, 3 | dprddomcld 18400 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | | fvexd 6203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) |
| 24 | | fvexd 6203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ V) |
| 25 | 6 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 26 | 10 | feqmptd 6249 |
. . . . . 6
⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
| 27 | 22, 23, 24, 25, 26 | offval2 6914 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘𝑓
(-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)))) |
| 28 | 27 | eqeq1d 2624 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘𝑓
(-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 29 | | ovex 6678 |
. . . . . . 7
⊢ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
| 30 | 29 | rgenw 2924 |
. . . . . 6
⊢
∀𝑥 ∈
𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V |
| 31 | | mpteqb 6299 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) ∈ V → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 )) |
| 32 | 30, 31 | ax-mp 5 |
. . . . 5
⊢ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ) |
| 33 | | dprdgrp 18404 |
. . . . . . . . 9
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 34 | 2, 33 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 36 | 6 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
| 37 | 10 | ffvelrnda 6359 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (Base‘𝐺)) |
| 38 | 5, 15, 16 | grpsubeq0 17501 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺) ∧ (𝐻‘𝑥) ∈ (Base‘𝐺)) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 39 | 35, 36, 37, 38 | syl3anc 1326 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 40 | 39 | ralbidva 2985 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 41 | 32, 40 | syl5bb 272 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(-g‘𝐺)(𝐻‘𝑥))) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 42 | 28, 41 | bitrd 268 |
. . 3
⊢ (𝜑 → ((𝐹 ∘𝑓
(-g‘𝐺)𝐻) = (𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 43 | 19, 21, 42 | 3bitr3d 298 |
. 2
⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) = (𝐻‘𝑥))) |
| 44 | 5 | dprdssv 18415 |
. . . 4
⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 45 | 15, 1, 2, 3, 4 | eldprdi 18417 |
. . . 4
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆)) |
| 46 | 44, 45 | sseldi 3601 |
. . 3
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺)) |
| 47 | 15, 1, 2, 3, 9 | eldprdi 18417 |
. . . 4
⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆)) |
| 48 | 44, 47 | sseldi 3601 |
. . 3
⊢ (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) |
| 49 | 5, 15, 16 | grpsubeq0 17501 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝐺 Σg
𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 50 | 34, 46, 48, 49 | syl3anc 1326 |
. 2
⊢ (𝜑 → (((𝐺 Σg 𝐹)(-g‘𝐺)(𝐺 Σg 𝐻)) = 0 ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐻))) |
| 51 | 14, 43, 50 | 3bitr2rd 297 |
1
⊢ (𝜑 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝐻) ↔ 𝐹 = 𝐻)) |