| Step | Hyp | Ref
| Expression |
| 1 | | dmdprdsplitlem.5 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴))) |
| 2 | | dmdprdsplitlem.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | dmdprdsplitlem.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | 2, 3 | dprdf2 18406 |
. . . . . . 7
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 5 | | dmdprdsplitlem.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| 6 | 4, 5 | fssresd 6071 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺)) |
| 7 | | fdm 6051 |
. . . . . 6
⊢ ((𝑆 ↾ 𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 8 | | dmdprdsplitlem.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 9 | | eqid 2622 |
. . . . . . 7
⊢ {ℎ ∈ X𝑖 ∈
𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } |
| 10 | 8, 9 | eldprd 18403 |
. . . . . 6
⊢ (dom
(𝑆 ↾ 𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 11 | 6, 7, 10 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆 ↾ 𝐴)) ↔ (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))) |
| 12 | 1, 11 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝐺dom DProd (𝑆 ↾ 𝐴) ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) |
| 13 | 12 | simprd 479 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 14 | 13 | adantr 481 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 15 | | simprr 796 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) |
| 16 | 12 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 18 | 6, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 19 | 18 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 20 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
| 21 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 22 | 9, 17, 19, 20, 21 | dprdff 18411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺)) |
| 23 | 22 | feqmptd 6249 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
| 24 | 5 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ⊆ 𝐼) |
| 25 | 24 | resmptd 5452 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 26 | | iftrue 4092 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐴 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = (𝑓‘𝑛)) |
| 27 | 26 | mpteq2ia 4740 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐴 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛)) |
| 28 | 25, 27 | syl6eq 2672 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ (𝑓‘𝑛))) |
| 29 | 23, 28 | eqtr4d 2659 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) |
| 30 | 29 | oveq2d 6666 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴))) |
| 31 | | eqid 2622 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 32 | 2 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆) |
| 33 | | dprdgrp 18404 |
. . . . . . . 8
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 34 | | grpmnd 17429 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd) |
| 36 | 2, 3 | dprddomcld 18400 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ V) |
| 37 | 36 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V) |
| 38 | | dmdprdsplitlem.w |
. . . . . . . 8
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 39 | 3 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼) |
| 40 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝐺dom DProd (𝑆 ↾ 𝐴)) |
| 41 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → dom (𝑆 ↾ 𝐴) = 𝐴) |
| 42 | | simplrl 800 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 }) |
| 43 | 9, 40, 41, 42 | dprdfcl 18412 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ ((𝑆 ↾ 𝐴)‘𝑛)) |
| 44 | | fvres 6207 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐴 → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
| 45 | 44 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → ((𝑆 ↾ 𝐴)‘𝑛) = (𝑆‘𝑛)) |
| 46 | 43, 45 | eleqtrd 2703 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) ∈ (𝑆‘𝑛)) |
| 47 | 4 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 48 | 47 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → (𝑆‘𝑛) ∈ (SubGrp‘𝐺)) |
| 49 | 8 | subg0cl 17602 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑛)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → 0 ∈ (𝑆‘𝑛)) |
| 51 | 50 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) ∧ ¬ 𝑛 ∈ 𝐴) → 0 ∈ (𝑆‘𝑛)) |
| 52 | 46, 51 | ifclda 4120 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ 𝐼) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈ (𝑆‘𝑛)) |
| 53 | | mptexg 6484 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ V → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
| 54 | 36, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
| 55 | 54 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈
V) |
| 56 | | funmpt 5926 |
. . . . . . . . . . 11
⊢ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
| 57 | 56 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 58 | 9, 17, 19, 20 | dprdffsupp 18413 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 ) |
| 59 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 60 | | eldifn 3733 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
| 61 | 60 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 )) |
| 62 | 59, 61 | eldifd 3585 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) |
| 63 | | ssid 3624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )) |
| 65 | 36, 5 | ssexd 4805 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ V) |
| 66 | 65 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V) |
| 67 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢
(0g‘𝐺) ∈ V |
| 68 | 8, 67 | eqeltri 2697 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V) |
| 70 | 22, 64, 66, 69 | suppssr 7326 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
| 71 | 70 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓‘𝑛) = 0 ) |
| 72 | 62, 71 | syldan 487 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ 𝐴) → (𝑓‘𝑛) = 0 ) |
| 73 | 72 | ifeq1da 4116 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑛 ∈ 𝐴, 0 , 0 )) |
| 74 | | ifid 4125 |
. . . . . . . . . . . 12
⊢ if(𝑛 ∈ 𝐴, 0 , 0 ) = 0 |
| 75 | 73, 74 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
| 76 | 75, 37 | suppss2 7329 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 )) |
| 77 | | fsuppsssupp 8291 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ V ∧ Fun
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
| 78 | 55, 57, 58, 76, 77 | syl22anc 1327 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) finSupp 0
) |
| 79 | 38, 32, 39, 52, 78 | dprdwd 18410 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ∈ 𝑊) |
| 80 | 38, 32, 39, 79, 21 | dprdff 18411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )):𝐼⟶(Base‘𝐺)) |
| 81 | 38, 32, 39, 79, 31 | dprdfcntz 18414 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ⊆
((Cntz‘𝐺)‘ran
(𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 82 | | eldifn 3733 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑛 ∈ 𝐴) |
| 83 | 82 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → ¬ 𝑛 ∈ 𝐴) |
| 84 | 83 | iffalsed 4097 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ 𝐴)) → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = 0 ) |
| 85 | 84, 37 | suppss2 7329 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) supp 0 ) ⊆ 𝐴) |
| 86 | 21, 8, 31, 35, 37, 80, 81, 85, 78 | gsumzres 18310 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 87 | 15, 30, 86 | 3eqtrd 2660 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 88 | | dmdprdsplitlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 89 | 88 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 ∈ 𝑊) |
| 90 | 8, 38, 32, 39, 89, 79 | dprdf11 18422 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) ↔ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )))) |
| 91 | 87, 90 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))) |
| 92 | 91 | fveq1d 6193 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋)) |
| 93 | | eldifi 3732 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → 𝑋 ∈ 𝐼) |
| 94 | 93 | ad2antlr 763 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋 ∈ 𝐼) |
| 95 | | eleq1 2689 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑛 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 96 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑋 → (𝑓‘𝑛) = (𝑓‘𝑋)) |
| 97 | 95, 96 | ifbieq1d 4109 |
. . . . 5
⊢ (𝑛 = 𝑋 → if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 98 | | eqid 2622 |
. . . . 5
⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) = (𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 )) |
| 99 | | fvex 6201 |
. . . . . 6
⊢ (𝑓‘𝑛) ∈ V |
| 100 | 99, 68 | ifex 4156 |
. . . . 5
⊢ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ) ∈
V |
| 101 | 97, 98, 100 | fvmpt3i 6287 |
. . . 4
⊢ (𝑋 ∈ 𝐼 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 102 | 94, 101 | syl 17 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 ∈ 𝐴, (𝑓‘𝑛), 0 ))‘𝑋) = if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 )) |
| 103 | | eldifn 3733 |
. . . . 5
⊢ (𝑋 ∈ (𝐼 ∖ 𝐴) → ¬ 𝑋 ∈ 𝐴) |
| 104 | 103 | ad2antlr 763 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋 ∈ 𝐴) |
| 105 | 104 | iffalsed 4097 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋 ∈ 𝐴, (𝑓‘𝑋), 0 ) = 0 ) |
| 106 | 92, 102, 105 | 3eqtrd 2660 |
. 2
⊢ (((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐴 ((𝑆 ↾ 𝐴)‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹‘𝑋) = 0 ) |
| 107 | 14, 106 | rexlimddv 3035 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐼 ∖ 𝐴)) → (𝐹‘𝑋) = 0 ) |