| Step | Hyp | Ref
| Expression |
| 1 | | dprdcntz.3 |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 2 | | dprdcntz.1 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | dprdcntz.2 |
. . . . . . 7
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | 2, 3 | dprddomcld 18400 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
| 5 | | eqid 2622 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 6 | | dprddisj.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 7 | | dprddisj.k |
. . . . . . 7
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 8 | 5, 6, 7 | dmdprd 18397 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
| 9 | 4, 3, 8 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
| 10 | 2, 9 | mpbid 222 |
. . . 4
⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
| 11 | 10 | simp3d 1075 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
| 12 | | simpr 477 |
. . . 4
⊢
((∀𝑦 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 13 | 12 | ralimi 2952 |
. . 3
⊢
(∀𝑥 ∈
𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 14 | 11, 13 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 15 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) |
| 16 | | sneq 4187 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
| 17 | 16 | difeq2d 3728 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
| 18 | 17 | imaeq2d 5466 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋}))) |
| 19 | 18 | unieqd 4446 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {𝑋}))) |
| 20 | 19 | fveq2d 6195 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) |
| 21 | 15, 20 | ineq12d 3815 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))))) |
| 22 | 21 | eqeq1d 2624 |
. . 3
⊢ (𝑥 = 𝑋 → (((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })) |
| 23 | 22 | rspcv 3305 |
. 2
⊢ (𝑋 ∈ 𝐼 → (∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })) |
| 24 | 1, 14, 23 | sylc 65 |
1
⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |