MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnfval Structured version   Visualization version   GIF version

Theorem dvnfval 23685
Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
dvnfval.1 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
Assertion
Ref Expression
dvnfval ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dvnfval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvn 23632 . . 3 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
21a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓}))))
3 simprl 794 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑠 = 𝑆)
43oveq1d 6665 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑠 D 𝑥) = (𝑆 D 𝑥))
54mpteq2dv 4745 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)))
6 dvnfval.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
75, 6syl6eqr 2674 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑥 ∈ V ↦ (𝑠 D 𝑥)) = 𝐺)
87coeq1d 5283 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ) = (𝐺 ∘ 1st ))
98seqeq2d 12808 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})))
10 simprr 796 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110sneqd 4189 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → {𝑓} = {𝐹})
1211xpeq2d 5139 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 × {𝑓}) = (ℕ0 × {𝐹}))
1312seqeq3d 12809 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
149, 13eqtrd 2656 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
15 simpr 477 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
1615oveq2d 6666 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
17 simpl 473 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ⊆ ℂ)
18 cnex 10017 . . . 4 ℂ ∈ V
1918elpw2 4828 . . 3 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
2017, 19sylibr 224 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝑆 ∈ 𝒫 ℂ)
21 simpr 477 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
22 seqex 12803 . . 3 seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V
2322a1i 11 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})) ∈ V)
242, 14, 16, 20, 21, 23ovmpt2dx 6787 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0((𝐺 ∘ 1st ), (ℕ0 × {𝐹})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158  {csn 4177  cmpt 4729   × cxp 5112  ccom 5118  (class class class)co 6650  cmpt2 6652  1st c1st 7166  pm cpm 7858  cc 9934  0cc0 9936  0cn0 11292  seqcseq 12801   D cdv 23627   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-dvn 23632
This theorem is referenced by:  dvnff  23686  dvn0  23687  dvnp1  23688
  Copyright terms: Public domain W3C validator