MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldprdi Structured version   Visualization version   GIF version

Theorem eldprdi 18417
Description: The domain of definition of the internal direct product, which states that 𝑆 is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
eldprdi (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem eldprdi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . 2 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.3 . . 3 (𝜑𝐹𝑊)
3 eqid 2622 . . 3 (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)
4 oveq2 6658 . . . . 5 (𝑓 = 𝐹 → (𝐺 Σg 𝑓) = (𝐺 Σg 𝐹))
54eqeq2d 2632 . . . 4 (𝑓 = 𝐹 → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝑓) ↔ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)))
65rspcev 3309 . . 3 ((𝐹𝑊 ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝐹)) → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
72, 3, 6sylancl 694 . 2 (𝜑 → ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
8 eldprdi.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
9 eldprdi.0 . . . 4 0 = (0g𝐺)
10 eldprdi.w . . . 4 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
119, 10eldprd 18403 . . 3 (dom 𝑆 = 𝐼 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
128, 11syl 17 . 2 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓𝑊 (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
131, 7, 12mpbir2and 957 1 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916   class class class wbr 4653  dom cdm 5114  cfv 5888  (class class class)co 6650  Xcixp 7908   finSupp cfsupp 8275  0gc0g 16100   Σg cgsu 16101   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-dprd 18394
This theorem is referenced by:  dprdfsub  18420  dprdf11  18422  dprdsubg  18423  dprdub  18424  dpjidcl  18457
  Copyright terms: Public domain W3C validator