![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdub | Structured version Visualization version GIF version |
Description: Each factor is a subset of the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdub.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dprdub | ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | eqid 2622 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
3 | dprdub.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝐺dom DProd 𝑆) |
5 | dprdub.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → dom 𝑆 = 𝐼) |
7 | dprdub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
8 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑋 ∈ 𝐼) |
9 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝑆‘𝑋)) | |
10 | eqid 2622 | . . . . . 6 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) | |
11 | 1, 2, 4, 6, 8, 9, 10 | dprdfid 18416 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥)) |
12 | 11 | simprd 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) = 𝑥) |
13 | 11 | simpld 475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺))) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
14 | 1, 2, 4, 6, 13 | eldprdi 18417 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → (𝐺 Σg (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝑥, (0g‘𝐺)))) ∈ (𝐺 DProd 𝑆)) |
15 | 12, 14 | eqeltrrd 2702 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑆‘𝑋)) → 𝑥 ∈ (𝐺 DProd 𝑆)) |
16 | 15 | ex 450 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑆‘𝑋) → 𝑥 ∈ (𝐺 DProd 𝑆))) |
17 | 16 | ssrdv 3609 | 1 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ⊆ wss 3574 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 Xcixp 7908 finSupp cfsupp 8275 0gc0g 16100 Σg cgsu 16101 DProd cdprd 18392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-mulg 17541 df-subg 17591 df-cntz 17750 df-cmn 18195 df-dprd 18394 |
This theorem is referenced by: dprdspan 18426 dprd2dlem2 18439 dprd2da 18441 dmdprdsplit2lem 18444 dprdsplit 18447 dpjrid 18461 ablfac1c 18470 |
Copyright terms: Public domain | W3C validator |