MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfil Structured version   Visualization version   GIF version

Theorem flimfil 21773
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = 𝐽
Assertion
Ref Expression
flimfil (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem flimfil
StepHypRef Expression
1 flimuni.1 . . . . . 6 𝑋 = 𝐽
21elflim2 21768 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simplbi 476 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋))
43simp2d 1074 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ran Fil)
5 filunirn 21686 . . 3 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
64, 5sylib 208 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐹))
73simp3d 1075 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
8 sspwuni 4611 . . . . 5 (𝐹 ⊆ 𝒫 𝑋 𝐹𝑋)
97, 8sylib 208 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹𝑋)
10 flimneiss 21770 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
11 flimtop 21769 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
121topopn 20711 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐽)
141flimelbas 21772 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)
15 opnneip 20923 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋𝐽𝐴𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1611, 13, 14, 15syl3anc 1326 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1710, 16sseldd 3604 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐹)
18 elssuni 4467 . . . . 5 (𝑋𝐹𝑋 𝐹)
1917, 18syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 𝐹)
209, 19eqssd 3620 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 = 𝑋)
2120fveq2d 6195 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘ 𝐹) = (Fil‘𝑋))
226, 21eleqtrd 2703 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  ran crn 5115  cfv 5888  (class class class)co 6650  Topctop 20698  neicnei 20901  Filcfil 21649   fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  flimtopon  21774  flimss1  21777  flimclsi  21782  hausflimlem  21783  flimsncls  21790  cnpflfi  21803  flimfcls  21830  flimcfil  23112
  Copyright terms: Public domain W3C validator