Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapresaun Structured version   Visualization version   GIF version

Theorem elmapresaun 37334
Description: fresaun 6075 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
elmapresaun ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶𝑚 (𝐴𝐵)))

Proof of Theorem elmapresaun
StepHypRef Expression
1 elmapi 7879 . . 3 (𝐹 ∈ (𝐶𝑚 𝐴) → 𝐹:𝐴𝐶)
2 elmapi 7879 . . 3 (𝐺 ∈ (𝐶𝑚 𝐵) → 𝐺:𝐵𝐶)
3 id 22 . . 3 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 fresaun 6075 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
51, 2, 3, 4syl3an 1368 . 2 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
6 elmapex 7878 . . . . 5 (𝐹 ∈ (𝐶𝑚 𝐴) → (𝐶 ∈ V ∧ 𝐴 ∈ V))
76simpld 475 . . . 4 (𝐹 ∈ (𝐶𝑚 𝐴) → 𝐶 ∈ V)
873ad2ant1 1082 . . 3 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → 𝐶 ∈ V)
96simprd 479 . . . . 5 (𝐹 ∈ (𝐶𝑚 𝐴) → 𝐴 ∈ V)
10 elmapex 7878 . . . . . 6 (𝐺 ∈ (𝐶𝑚 𝐵) → (𝐶 ∈ V ∧ 𝐵 ∈ V))
1110simprd 479 . . . . 5 (𝐺 ∈ (𝐶𝑚 𝐵) → 𝐵 ∈ V)
12 unexg 6959 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
139, 11, 12syl2an 494 . . . 4 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵)) → (𝐴𝐵) ∈ V)
14133adant3 1081 . . 3 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐴𝐵) ∈ V)
158, 14elmapd 7871 . 2 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ∈ (𝐶𝑚 (𝐴𝐵)) ↔ (𝐹𝐺):(𝐴𝐵)⟶𝐶))
165, 15mpbird 247 1 ((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶𝑚 (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  cres 5116  wf 5884  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  diophin  37336  eldioph4b  37375  diophren  37377
  Copyright terms: Public domain W3C validator