Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   GIF version

Theorem eldioph4b 37375
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4b (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Distinct variable groups:   𝑊,𝑝,𝑡,𝑤   𝑆,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤

Proof of Theorem eldioph4b
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 37327 . 2 (𝑆 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 eldioph4b.a . . . . . 6 𝑊 ∈ V
3 ovex 6678 . . . . . 6 (1...𝑁) ∈ V
42, 3unex 6956 . . . . 5 (𝑊 ∪ (1...𝑁)) ∈ V
54jctr 565 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V))
6 eldioph4b.b . . . . . . 7 ¬ 𝑊 ∈ Fin
76intnanr 961 . . . . . 6 ¬ (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin)
8 unfir 8228 . . . . . 6 ((𝑊 ∪ (1...𝑁)) ∈ Fin → (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin))
97, 8mto 188 . . . . 5 ¬ (𝑊 ∪ (1...𝑁)) ∈ Fin
10 ssun2 3777 . . . . 5 (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))
119, 10pm3.2i 471 . . . 4 (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))
12 eldioph2b 37326 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V) ∧ (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))) → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
135, 11, 12sylancl 694 . . 3 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
14 elmapssres 7882 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)))
1510, 14mpan2 707 . . . . . . . . . . . . . 14 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)))
1615adantr 481 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)))
17 ssun1 3776 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝑊 ∪ (1...𝑁))
18 elmapssres 7882 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ 𝑊 ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0𝑚 𝑊))
1917, 18mpan2 707 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0𝑚 𝑊))
2019adantr 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢𝑊) ∈ (ℕ0𝑚 𝑊))
21 uncom 3757 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
22 resundi 5410 . . . . . . . . . . . . . . . . . . 19 (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
2321, 22eqtr4i 2647 . . . . . . . . . . . . . . . . . 18 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = (𝑢 ↾ (𝑊 ∪ (1...𝑁)))
24 elmapi 7879 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → 𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0)
25 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0𝑢 Fn (𝑊 ∪ (1...𝑁)))
26 fnresdm 6000 . . . . . . . . . . . . . . . . . . 19 (𝑢 Fn (𝑊 ∪ (1...𝑁)) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2823, 27syl5eq 2668 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = 𝑢)
2928fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = (𝑝𝑢))
3029eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0 ↔ (𝑝𝑢) = 0))
3130biimpar 502 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0)
32 uneq2 3761 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑢𝑊) → ((𝑢 ↾ (1...𝑁)) ∪ 𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)))
3332fveq2d 6195 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑢𝑊) → (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))))
3433eqeq1d 2624 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢𝑊) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0))
3534rspcev 3309 . . . . . . . . . . . . . 14 (((𝑢𝑊) ∈ (ℕ0𝑚 𝑊) ∧ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0) → ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3620, 31, 35syl2anc 693 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3716, 36jca 554 . . . . . . . . . . . 12 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
38 eleq1 2689 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁))))
39 uneq1 3760 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ 𝑤))
4039fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑝‘(𝑡𝑤)) = (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)))
4140eqeq1d 2624 . . . . . . . . . . . . . 14 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑝‘(𝑡𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
4241rexbidv 3052 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
4338, 42anbi12d 747 . . . . . . . . . . . 12 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0) ↔ ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)))
4437, 43syl5ibrcom 237 . . . . . . . . . . 11 ((𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4544expimpd 629 . . . . . . . . . 10 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → (((𝑝𝑢) = 0 ∧ 𝑡 = (𝑢 ↾ (1...𝑁))) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4645ancomsd 470 . . . . . . . . 9 (𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4746rexlimiv 3027 . . . . . . . 8 (∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0))
48 uncom 3757 . . . . . . . . . . . 12 (𝑡𝑤) = (𝑤𝑡)
49 fz1ssnn 12372 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
50 sslin 3839 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑁) ⊆ ℕ → (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ))
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ)
52 eldioph4b.c . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ ℕ) = ∅
5351, 52sseqtri 3637 . . . . . . . . . . . . . . . . . 18 (𝑊 ∩ (1...𝑁)) ⊆ ∅
54 ss0 3974 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∩ (1...𝑁)) ⊆ ∅ → (𝑊 ∩ (1...𝑁)) = ∅)
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑊 ∩ (1...𝑁)) = ∅
5655reseq2i 5393 . . . . . . . . . . . . . . . 16 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑤 ↾ ∅)
57 res0 5400 . . . . . . . . . . . . . . . 16 (𝑤 ↾ ∅) = ∅
5856, 57eqtri 2644 . . . . . . . . . . . . . . 15 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = ∅
5955reseq2i 5393 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ ∅)
60 res0 5400 . . . . . . . . . . . . . . . 16 (𝑡 ↾ ∅) = ∅
6159, 60eqtri 2644 . . . . . . . . . . . . . . 15 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = ∅
6258, 61eqtr4i 2647 . . . . . . . . . . . . . 14 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))
63 elmapresaun 37334 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0𝑚 𝑊) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → (𝑤𝑡) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))))
6462, 63mp3an3 1413 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0𝑚 𝑊) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → (𝑤𝑡) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))))
6564ancoms 469 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) → (𝑤𝑡) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))))
6648, 65syl5eqel 2705 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) → (𝑡𝑤) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))))
6766adantr 481 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑡𝑤) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))))
6848reseq1i 5392 . . . . . . . . . . . 12 ((𝑡𝑤) ↾ (1...𝑁)) = ((𝑤𝑡) ↾ (1...𝑁))
69 elmapresaunres2 37335 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0𝑚 𝑊) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
7062, 69mp3an3 1413 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0𝑚 𝑊) ∧ 𝑡 ∈ (ℕ0𝑚 (1...𝑁))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
7170ancoms 469 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
7268, 71syl5req 2669 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
7372adantr 481 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
74 simpr 477 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑝‘(𝑡𝑤)) = 0)
75 reseq1 5390 . . . . . . . . . . . . 13 (𝑢 = (𝑡𝑤) → (𝑢 ↾ (1...𝑁)) = ((𝑡𝑤) ↾ (1...𝑁)))
7675eqeq2d 2632 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → (𝑡 = (𝑢 ↾ (1...𝑁)) ↔ 𝑡 = ((𝑡𝑤) ↾ (1...𝑁))))
77 fveq2 6191 . . . . . . . . . . . . 13 (𝑢 = (𝑡𝑤) → (𝑝𝑢) = (𝑝‘(𝑡𝑤)))
7877eqeq1d 2624 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → ((𝑝𝑢) = 0 ↔ (𝑝‘(𝑡𝑤)) = 0))
7976, 78anbi12d 747 . . . . . . . . . . 11 (𝑢 = (𝑡𝑤) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)))
8079rspcev 3309 . . . . . . . . . 10 (((𝑡𝑤) ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁))) ∧ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)) → ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
8167, 73, 74, 80syl12anc 1324 . . . . . . . . 9 (((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ 𝑤 ∈ (ℕ0𝑚 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
8281r19.29an 3077 . . . . . . . 8 ((𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
8347, 82impbii 199 . . . . . . 7 (∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0))
8483abbii 2739 . . . . . 6 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
85 df-rab 2921 . . . . . 6 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0} = {𝑡 ∣ (𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
8684, 85eqtr4i 2647 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0}
8786eqeq2i 2634 . . . 4 (𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ 𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8887rexbii 3041 . . 3 (∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8913, 88syl6bb 276 . 2 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
901, 89biadan2 674 1 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  ...cfz 12326  mzPolycmzp 37285  Diophcdioph 37318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mzpcl 37286  df-mzp 37287  df-dioph 37319
This theorem is referenced by:  eldioph4i  37376  diophren  37377
  Copyright terms: Public domain W3C validator