![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapsnd | Structured version Visualization version GIF version |
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
elmapsnd.1 | ⊢ (𝜑 → 𝐹 Fn {𝐴}) |
elmapsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
elmapsnd.3 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
Ref | Expression |
---|---|
elmapsnd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapsnd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn {𝐴}) | |
2 | elsni 4194 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
3 | 2 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
5 | elmapsnd.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
7 | 4, 6 | eqeltrd 2701 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) ∈ 𝐵) |
8 | 7 | ralrimiva 2966 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵) |
9 | 1, 8 | jca 554 | . . 3 ⊢ (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) |
10 | ffnfv 6388 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) | |
11 | 9, 10 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
12 | elmapsnd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
13 | snex 4908 | . . . 4 ⊢ {𝐴} ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
15 | 12, 14 | elmapd 7871 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑𝑚 {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵)) |
16 | 11, 15 | mpbird 247 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 {csn 4177 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 |
This theorem is referenced by: ssmapsn 39408 |
Copyright terms: Public domain | W3C validator |