Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapsnd Structured version   Visualization version   Unicode version

Theorem elmapsnd 39396
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elmapsnd.1  |-  ( ph  ->  F  Fn  { A } )
elmapsnd.2  |-  ( ph  ->  B  e.  V )
elmapsnd.3  |-  ( ph  ->  ( F `  A
)  e.  B )
Assertion
Ref Expression
elmapsnd  |-  ( ph  ->  F  e.  ( B  ^m  { A }
) )

Proof of Theorem elmapsnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elmapsnd.1 . . . 4  |-  ( ph  ->  F  Fn  { A } )
2 elsni 4194 . . . . . . . 8  |-  ( x  e.  { A }  ->  x  =  A )
32fveq2d 6195 . . . . . . 7  |-  ( x  e.  { A }  ->  ( F `  x
)  =  ( F `
 A ) )
43adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  { A } )  -> 
( F `  x
)  =  ( F `
 A ) )
5 elmapsnd.3 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  B )
65adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  { A } )  -> 
( F `  A
)  e.  B )
74, 6eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  x  e.  { A } )  -> 
( F `  x
)  e.  B )
87ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  { A }  ( F `  x )  e.  B
)
91, 8jca 554 . . 3  |-  ( ph  ->  ( F  Fn  { A }  /\  A. x  e.  { A }  ( F `  x )  e.  B ) )
10 ffnfv 6388 . . 3  |-  ( F : { A } --> B 
<->  ( F  Fn  { A }  /\  A. x  e.  { A }  ( F `  x )  e.  B ) )
119, 10sylibr 224 . 2  |-  ( ph  ->  F : { A }
--> B )
12 elmapsnd.2 . . 3  |-  ( ph  ->  B  e.  V )
13 snex 4908 . . . 4  |-  { A }  e.  _V
1413a1i 11 . . 3  |-  ( ph  ->  { A }  e.  _V )
1512, 14elmapd 7871 . 2  |-  ( ph  ->  ( F  e.  ( B  ^m  { A } )  <->  F : { A } --> B ) )
1611, 15mpbird 247 1  |-  ( ph  ->  F  e.  ( B  ^m  { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   {csn 4177    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  ssmapsn  39408
  Copyright terms: Public domain W3C validator