Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elno2 Structured version   Visualization version   GIF version

Theorem elno2 31807
Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
elno2 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))

Proof of Theorem elno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 31802 . . 3 (𝐴 No → Fun 𝐴)
2 nodmon 31803 . . 3 (𝐴 No → dom 𝐴 ∈ On)
3 norn 31804 . . 3 (𝐴 No → ran 𝐴 ⊆ {1𝑜, 2𝑜})
41, 2, 33jca 1242 . 2 (𝐴 No → (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
5 simp2 1062 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → dom 𝐴 ∈ On)
6 simpl 473 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → Fun 𝐴)
7 eqidd 2623 . . . . . . . 8 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → dom 𝐴 = dom 𝐴)
8 df-fn 5891 . . . . . . . 8 (𝐴 Fn dom 𝐴 ↔ (Fun 𝐴 ∧ dom 𝐴 = dom 𝐴))
96, 7, 8sylanbrc 698 . . . . . . 7 ((Fun 𝐴 ∧ dom 𝐴 ∈ On) → 𝐴 Fn dom 𝐴)
109anim1i 592 . . . . . 6 (((Fun 𝐴 ∧ dom 𝐴 ∈ On) ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
11103impa 1259 . . . . 5 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
12 df-f 5892 . . . . 5 (𝐴:dom 𝐴⟶{1𝑜, 2𝑜} ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
1311, 12sylibr 224 . . . 4 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → 𝐴:dom 𝐴⟶{1𝑜, 2𝑜})
14 feq2 6027 . . . . 5 (𝑥 = dom 𝐴 → (𝐴:𝑥⟶{1𝑜, 2𝑜} ↔ 𝐴:dom 𝐴⟶{1𝑜, 2𝑜}))
1514rspcev 3309 . . . 4 ((dom 𝐴 ∈ On ∧ 𝐴:dom 𝐴⟶{1𝑜, 2𝑜}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
165, 13, 15syl2anc 693 . . 3 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
17 elno 31799 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1𝑜, 2𝑜})
1816, 17sylibr 224 . 2 ((Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}) → 𝐴 No )
194, 18impbii 199 1 (𝐴 No ↔ (Fun 𝐴 ∧ dom 𝐴 ∈ On ∧ ran 𝐴 ⊆ {1𝑜, 2𝑜}))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  {cpr 4179  dom cdm 5114  ran crn 5115  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  wf 5884  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-no 31796
This theorem is referenced by:  elno3  31808  noextend  31819  noextendseq  31820  nosupno  31849
  Copyright terms: Public domain W3C validator