Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupno Structured version   Visualization version   GIF version

Theorem nosupno 31849
Description: The next several theorems deal with a surreal "supremum". This surreal will ultimately be shown to bound 𝐴 below and bound the restriction of any surreal above. We begin by showing that the given expression actually defines a surreal number. (Contributed by Scott Fenton, 5-Dec-2021.)
Hypothesis
Ref Expression
nosupno.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupno ((𝐴 No 𝐴𝑉) → 𝑆 No )
Distinct variable group:   𝑥,𝐴,𝑦,𝑔,𝑣,𝑢
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem nosupno
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴𝑉𝐴 ∈ V)
2 nosupno.1 . . 3 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
3 iftrue 4092 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
43adantr 481 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}))
5 simprl 794 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → 𝐴 No )
6 simpl 473 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
7 nomaxmo 31847 . . . . . . . . . 10 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
87ad2antrl 764 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9 reu5 3159 . . . . . . . . 9 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
106, 8, 9sylanbrc 698 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
11 riotacl 6625 . . . . . . . 8 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
1210, 11syl 17 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
135, 12sseldd 3604 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
14 2on 7568 . . . . . . . . 9 2𝑜 ∈ On
1514elexi 3213 . . . . . . . 8 2𝑜 ∈ V
1615prid2 4298 . . . . . . 7 2𝑜 ∈ {1𝑜, 2𝑜}
1716noextend 31819 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No )
1813, 17syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}) ∈ No )
194, 18eqeltrd 2701 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
20 iffalse 4095 . . . . . 6 (¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
2120adantr 481 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
22 funmpt 5926 . . . . . . 7 Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2322a1i 11 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
24 iotaex 5868 . . . . . . . . 9 (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) ∈ V
25 eqid 2622 . . . . . . . . 9 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
2624, 25dmmpti 6023 . . . . . . . 8 dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}
27 ssel2 3598 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → 𝑢 No )
28 nodmon 31803 . . . . . . . . . . . . . . . . 17 (𝑢 No → dom 𝑢 ∈ On)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ On)
30 onss 6990 . . . . . . . . . . . . . . . 16 (dom 𝑢 ∈ On → dom 𝑢 ⊆ On)
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → dom 𝑢 ⊆ On)
3231sseld 3602 . . . . . . . . . . . . . 14 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ∈ On))
3332adantrd 484 . . . . . . . . . . . . 13 ((𝐴 No 𝑢𝐴) → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3433rexlimdva 3031 . . . . . . . . . . . 12 (𝐴 No → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ On))
3534abssdv 3676 . . . . . . . . . . 11 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On)
36 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → 𝑎𝑏)
3729adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → dom 𝑢 ∈ On)
38 ontr1 5771 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑢 ∈ On → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑎𝑏𝑏 ∈ dom 𝑢) → 𝑎 ∈ dom 𝑢))
4036, 39mpand 711 . . . . . . . . . . . . . . . . . 18 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → (𝑏 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
4140adantrd 484 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → 𝑎 ∈ dom 𝑢))
42 reseq1 5390 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎))
43 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((dom 𝑢 ∈ On ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
4437, 43sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑏 ∈ On)
45 suceloni 7013 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 ∈ On → suc 𝑏 ∈ On)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑏 ∈ On)
47 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → 𝑎𝑏)
48 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ On → Ord 𝑏)
4944, 48syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → Ord 𝑏)
50 ordsucelsuc 7022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑏 → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5149, 50syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (𝑎𝑏 ↔ suc 𝑎 ∈ suc 𝑏))
5247, 51mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ∈ suc 𝑏)
53 onelss 5766 . . . . . . . . . . . . . . . . . . . . . . . 24 (suc 𝑏 ∈ On → (suc 𝑎 ∈ suc 𝑏 → suc 𝑎 ⊆ suc 𝑏))
5446, 52, 53sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → suc 𝑎 ⊆ suc 𝑏)
5554resabs1d 5428 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑢 ↾ suc 𝑎))
5654resabs1d 5428 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))
5755, 56eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (((𝑢 ↾ suc 𝑏) ↾ suc 𝑎) = ((𝑣 ↾ suc 𝑏) ↾ suc 𝑎) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5842, 57syl5ib 234 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏) → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
5958imim2d 57 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6059ralimdv 2963 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) ∧ 𝑏 ∈ dom 𝑢) → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6160expimpd 629 . . . . . . . . . . . . . . . . 17 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
6241, 61jcad 555 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝑎𝑏) ∧ 𝑢𝐴) → ((𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6362reximdva 3017 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑎𝑏) → (∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
6463expimpd 629 . . . . . . . . . . . . . 14 (𝐴 No → ((𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))) → ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
65 vex 3203 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
66 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (𝑦 ∈ dom 𝑢𝑏 ∈ dom 𝑢))
67 suceq 5790 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → suc 𝑦 = suc 𝑏)
6867reseq2d 5396 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑏))
6967reseq2d 5396 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑏))
7068, 69eqeq12d 2637 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))
7170imbi2d 330 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7271ralbidv 2986 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7366, 72anbi12d 747 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7473rexbidv 3052 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
7565, 74elab 3350 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏))))
7675anbi2i 730 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) ↔ (𝑎𝑏 ∧ ∃𝑢𝐴 (𝑏 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑏) = (𝑣 ↾ suc 𝑏)))))
77 vex 3203 . . . . . . . . . . . . . . 15 𝑎 ∈ V
78 eleq1 2689 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (𝑦 ∈ dom 𝑢𝑎 ∈ dom 𝑢))
79 suceq 5790 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → suc 𝑦 = suc 𝑎)
8079reseq2d 5396 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑎))
8179reseq2d 5396 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑎 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑎))
8280, 81eqeq12d 2637 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑎 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))
8382imbi2d 330 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑎 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8483ralbidv 2986 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑎 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8578, 84anbi12d 747 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8685rexbidv 3052 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎)))))
8777, 86elab 3350 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑎 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑎) = (𝑣 ↾ suc 𝑎))))
8864, 76, 873imtr4g 285 . . . . . . . . . . . . 13 (𝐴 No → ((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
8988alrimivv 1856 . . . . . . . . . . . 12 (𝐴 No → ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
90 dftr2 4754 . . . . . . . . . . . 12 (Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∀𝑎𝑏((𝑎𝑏𝑏 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → 𝑎 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9189, 90sylibr 224 . . . . . . . . . . 11 (𝐴 No → Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
92 dford5 31608 . . . . . . . . . . 11 (Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ On ∧ Tr {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
9335, 91, 92sylanbrc 698 . . . . . . . . . 10 (𝐴 No → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
9493adantr 481 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})
95 bdayfo 31828 . . . . . . . . . . . . . . 15 bday : No onto→On
96 fofun 6116 . . . . . . . . . . . . . . 15 ( bday : No onto→On → Fun bday )
9795, 96ax-mp 5 . . . . . . . . . . . . . 14 Fun bday
98 funimaexg 5975 . . . . . . . . . . . . . 14 ((Fun bday 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
9997, 98mpan 706 . . . . . . . . . . . . 13 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
100 uniexg 6955 . . . . . . . . . . . . 13 (( bday 𝐴) ∈ V → ( bday 𝐴) ∈ V)
10199, 100syl 17 . . . . . . . . . . . 12 (𝐴 ∈ V → ( bday 𝐴) ∈ V)
102101adantl 482 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → ( bday 𝐴) ∈ V)
103 simpl 473 . . . . . . . . . . . . . 14 ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → 𝑦 ∈ dom 𝑢)
104103reximi 3011 . . . . . . . . . . . . 13 (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) → ∃𝑢𝐴 𝑦 ∈ dom 𝑢)
105104ss2abi 3674 . . . . . . . . . . . 12 {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢}
106 bdayval 31801 . . . . . . . . . . . . . . . . . . 19 (𝑢 No → ( bday 𝑢) = dom 𝑢)
10727, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) = dom 𝑢)
108 fofn 6117 . . . . . . . . . . . . . . . . . . . 20 ( bday : No onto→On → bday Fn No )
10995, 108ax-mp 5 . . . . . . . . . . . . . . . . . . 19 bday Fn No
110 fnfvima 6496 . . . . . . . . . . . . . . . . . . 19 (( bday Fn No 𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
111109, 110mp3an1 1411 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑢𝐴) → ( bday 𝑢) ∈ ( bday 𝐴))
112107, 111eqeltrrd 2702 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑢𝐴) → dom 𝑢 ∈ ( bday 𝐴))
113 elssuni 4467 . . . . . . . . . . . . . . . . 17 (dom 𝑢 ∈ ( bday 𝐴) → dom 𝑢 ( bday 𝐴))
114112, 113syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No 𝑢𝐴) → dom 𝑢 ( bday 𝐴))
115114sseld 3602 . . . . . . . . . . . . . . 15 ((𝐴 No 𝑢𝐴) → (𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
116115rexlimdva 3031 . . . . . . . . . . . . . 14 (𝐴 No → (∃𝑢𝐴 𝑦 ∈ dom 𝑢𝑦 ( bday 𝐴)))
117116abssdv 3676 . . . . . . . . . . . . 13 (𝐴 No → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
118117adantr 481 . . . . . . . . . . . 12 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 𝑦 ∈ dom 𝑢} ⊆ ( bday 𝐴))
119105, 118syl5ss 3614 . . . . . . . . . . 11 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ⊆ ( bday 𝐴))
120102, 119ssexd 4805 . . . . . . . . . 10 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V)
121 elong 5731 . . . . . . . . . 10 ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ V → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
122120, 121syl 17 . . . . . . . . 9 ((𝐴 No 𝐴 ∈ V) → ({𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On ↔ Ord {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}))
12394, 122mpbird 247 . . . . . . . 8 ((𝐴 No 𝐴 ∈ V) → {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ∈ On)
12426, 123syl5eqel 2705 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
125124adantl 482 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On)
12625rnmpt 5371 . . . . . . . 8 ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) = {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))}
127 vex 3203 . . . . . . . . . . . 12 𝑔 ∈ V
128 eleq1 2689 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (𝑦 ∈ dom 𝑢𝑔 ∈ dom 𝑢))
129 suceq 5790 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑔 → suc 𝑦 = suc 𝑔)
130129reseq2d 5396 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc 𝑔))
131129reseq2d 5396 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑔 → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑔))
132130, 131eqeq12d 2637 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑔 → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))
133132imbi2d 330 . . . . . . . . . . . . . . 15 (𝑦 = 𝑔 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
134133ralbidv 2986 . . . . . . . . . . . . . 14 (𝑦 = 𝑔 → (∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
135128, 134anbi12d 747 . . . . . . . . . . . . 13 (𝑦 = 𝑔 → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
136135rexbidv 3052 . . . . . . . . . . . 12 (𝑦 = 𝑔 → (∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))))
137127, 136elab 3350 . . . . . . . . . . 11 (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))))
138 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑔) = (𝑢𝑔)
139 fvex 6201 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑔) ∈ V
140 eqeq2 2633 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑢𝑔) → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = (𝑢𝑔)))
1411403anbi3d 1405 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑢𝑔) → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔))))
142139, 141spcev 3300 . . . . . . . . . . . . . . . . . . 19 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = (𝑢𝑔)) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
143138, 142mp3an3 1413 . . . . . . . . . . . . . . . . . 18 ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
144143reximi 3011 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
145 rexcom4 3225 . . . . . . . . . . . . . . . . 17 (∃𝑢𝐴𝑥(𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
146144, 145sylib 208 . . . . . . . . . . . . . . . 16 (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
147146adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
148 noprefixmo 31848 . . . . . . . . . . . . . . . 16 (𝐴 No → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
149148adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
150 eu5 2496 . . . . . . . . . . . . . . 15 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (∃𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ∧ ∃*𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
151147, 149, 150sylanbrc 698 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))
152 vex 3203 . . . . . . . . . . . . . . 15 𝑧 ∈ V
153 eqeq2 2633 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑢𝑔) = 𝑥 ↔ (𝑢𝑔) = 𝑧))
1541533anbi3d 1405 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
155154rexbidv 3052 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) ↔ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧)))
156155iota2 5877 . . . . . . . . . . . . . . 15 ((𝑧 ∈ V ∧ ∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
157152, 156mpan 706 . . . . . . . . . . . . . 14 (∃!𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
158151, 157syl 17 . . . . . . . . . . . . 13 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧))
159 eqcom 2629 . . . . . . . . . . . . 13 ((℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) = 𝑧𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))
160158, 159syl6bb 276 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) ↔ 𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
161 simprr3 1111 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) = 𝑧)
16227adantrr 753 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑢 No )
163 norn 31804 . . . . . . . . . . . . . . . . 17 (𝑢 No → ran 𝑢 ⊆ {1𝑜, 2𝑜})
164162, 163syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → ran 𝑢 ⊆ {1𝑜, 2𝑜})
165 nofun 31802 . . . . . . . . . . . . . . . . . 18 (𝑢 No → Fun 𝑢)
166162, 165syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → Fun 𝑢)
167 simprr1 1109 . . . . . . . . . . . . . . . . 17 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑔 ∈ dom 𝑢)
168 fvelrn 6352 . . . . . . . . . . . . . . . . 17 ((Fun 𝑢𝑔 ∈ dom 𝑢) → (𝑢𝑔) ∈ ran 𝑢)
169166, 167, 168syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ ran 𝑢)
170164, 169sseldd 3604 . . . . . . . . . . . . . . 15 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → (𝑢𝑔) ∈ {1𝑜, 2𝑜})
171161, 170eqeltrrd 2702 . . . . . . . . . . . . . 14 ((𝐴 No ∧ (𝑢𝐴 ∧ (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧))) → 𝑧 ∈ {1𝑜, 2𝑜})
172171rexlimdvaa 3032 . . . . . . . . . . . . 13 (𝐴 No → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1𝑜, 2𝑜}))
173172adantr 481 . . . . . . . . . . . 12 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑧) → 𝑧 ∈ {1𝑜, 2𝑜}))
174160, 173sylbird 250 . . . . . . . . . . 11 ((𝐴 No ∧ ∃𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)))) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1𝑜, 2𝑜}))
175137, 174sylan2b 492 . . . . . . . . . 10 ((𝐴 No 𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) → (𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1𝑜, 2𝑜}))
176175rexlimdva 3031 . . . . . . . . 9 (𝐴 No → (∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)) → 𝑧 ∈ {1𝑜, 2𝑜}))
177176abssdv 3676 . . . . . . . 8 (𝐴 No → {𝑧 ∣ ∃𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}𝑧 = (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))} ⊆ {1𝑜, 2𝑜})
178126, 177syl5eqss 3649 . . . . . . 7 (𝐴 No → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1𝑜, 2𝑜})
179178ad2antrl 764 . . . . . 6 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1𝑜, 2𝑜})
180 elno2 31807 . . . . . 6 ((𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No ↔ (Fun (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∧ dom (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ On ∧ ran (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ⊆ {1𝑜, 2𝑜}))
18123, 125, 179, 180syl3anbrc 1246 . . . . 5 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))) ∈ No )
18221, 181eqeltrd 2701 . . . 4 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V)) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
18319, 182pm2.61ian 831 . . 3 ((𝐴 No 𝐴 ∈ V) → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) ∈ No )
1842, 183syl5eqel 2705 . 2 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
1851, 184sylan2 491 1 ((𝐴 No 𝐴𝑉) → 𝑆 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  ∃*wmo 2471  {cab 2608  wral 2912  wrex 2913  ∃!wreu 2914  ∃*wrmo 2915  Vcvv 3200  cun 3572  wss 3574  ifcif 4086  {csn 4177  {cpr 4179  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729  Tr wtr 4752  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Ord word 5722  Oncon0 5723  suc csuc 5725  cio 5849  Fun wfun 5882   Fn wfn 5883  ontowfo 5886  cfv 5888  crio 6610  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794   bday cbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  nosupbday  31851  nosupres  31853  nosupbnd1lem1  31854  nosupbnd1lem2  31855  nosupbnd1lem3  31856  nosupbnd1lem4  31857  nosupbnd1lem5  31858  nosupbnd1lem6  31859  nosupbnd2  31862  noetalem1  31863  noetalem2  31864  noetalem3  31865  noetalem4  31866
  Copyright terms: Public domain W3C validator