![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnp | Structured version Visualization version GIF version |
Description: Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elnp | ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝐴 ∈ P → 𝐴 ∈ V) | |
2 | pssss 3702 | . . . 4 ⊢ (𝐴 ⊊ Q → 𝐴 ⊆ Q) | |
3 | nqex 9745 | . . . . 5 ⊢ Q ∈ V | |
4 | 3 | ssex 4802 | . . . 4 ⊢ (𝐴 ⊆ Q → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐴 ⊊ Q → 𝐴 ∈ V) |
6 | 5 | ad2antlr 763 | . 2 ⊢ (((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V) |
7 | psseq2 3695 | . . . . 5 ⊢ (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴)) | |
8 | psseq1 3694 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 ⊊ Q ↔ 𝐴 ⊊ Q)) | |
9 | 7, 8 | anbi12d 747 | . . . 4 ⊢ (𝑧 = 𝐴 → ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ↔ (∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q))) |
10 | eleq2 2690 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
11 | 10 | imbi2d 330 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → ((𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ (𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
12 | 11 | albidv 1849 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴))) |
13 | rexeq 3139 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) | |
14 | 12, 13 | anbi12d 747 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
15 | 14 | raleqbi1dv 3146 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
16 | 9, 15 | anbi12d 747 | . . 3 ⊢ (𝑧 = 𝐴 → (((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
17 | df-np 9803 | . . 3 ⊢ P = {𝑧 ∣ ((∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q) ∧ ∀𝑥 ∈ 𝑧 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧) ∧ ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))} | |
18 | 16, 17 | elab2g 3353 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)))) |
19 | 1, 6, 18 | pm5.21nii 368 | 1 ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 ⊊ wpss 3575 ∅c0 3915 class class class wbr 4653 Qcnq 9674 <Q cltq 9680 Pcnp 9681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 df-ni 9694 df-nq 9734 df-np 9803 |
This theorem is referenced by: genpcl 9830 nqpr 9836 ltexprlem5 9862 reclem2pr 9870 suplem1pr 9874 |
Copyright terms: Public domain | W3C validator |