MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqtop Structured version   Visualization version   GIF version

Theorem elqtop 21500
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
elqtop ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))

Proof of Theorem elqtop
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qtopval.1 . . . 4 𝑋 = 𝐽
21qtopval2 21499 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
32eleq2d 2687 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽}))
4 imaeq2 5462 . . . . 5 (𝑠 = 𝐴 → (𝐹𝑠) = (𝐹𝐴))
54eleq1d 2686 . . . 4 (𝑠 = 𝐴 → ((𝐹𝑠) ∈ 𝐽 ↔ (𝐹𝐴) ∈ 𝐽))
65elrab 3363 . . 3 (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽))
7 uniexg 6955 . . . . . . . . 9 (𝐽𝑉 𝐽 ∈ V)
81, 7syl5eqel 2705 . . . . . . . 8 (𝐽𝑉𝑋 ∈ V)
983ad2ant1 1082 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
10 simp3 1063 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
119, 10ssexd 4805 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
12 simp2 1062 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍onto𝑌)
13 fornex 7135 . . . . . 6 (𝑍 ∈ V → (𝐹:𝑍onto𝑌𝑌 ∈ V))
1411, 12, 13sylc 65 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ∈ V)
15 elpw2g 4827 . . . . 5 (𝑌 ∈ V → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1614, 15syl 17 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ 𝒫 𝑌𝐴𝑌))
1716anbi1d 741 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐴 ∈ 𝒫 𝑌 ∧ (𝐹𝐴) ∈ 𝐽) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
186, 17syl5bb 272 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽} ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
193, 18bitrd 268 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐴 ∈ (𝐽 qTop 𝐹) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436  ccnv 5113  cima 5117  ontowfo 5886  (class class class)co 6650   qTop cqtop 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167
This theorem is referenced by:  qtoptop2  21502  elqtop2  21504  elqtop3  21506
  Copyright terms: Public domain W3C validator