MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopres Structured version   Visualization version   GIF version

Theorem qtopres 21501
Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that 𝐹 be a function with domain 𝑋. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopres (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹𝑋)))

Proof of Theorem qtopres
Dummy variables 𝑠 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resima 5431 . . . . . . 7 ((𝐹𝑋) “ 𝑋) = (𝐹𝑋)
21pweqi 4162 . . . . . 6 𝒫 ((𝐹𝑋) “ 𝑋) = 𝒫 (𝐹𝑋)
3 rabeq 3192 . . . . . 6 (𝒫 ((𝐹𝑋) “ 𝑋) = 𝒫 (𝐹𝑋) → {𝑠 ∈ 𝒫 ((𝐹𝑋) “ 𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽})
42, 3ax-mp 5 . . . . 5 {𝑠 ∈ 𝒫 ((𝐹𝑋) “ 𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽}
5 residm 5430 . . . . . . . . . . 11 ((𝐹𝑋) ↾ 𝑋) = (𝐹𝑋)
65cnveqi 5297 . . . . . . . . . 10 ((𝐹𝑋) ↾ 𝑋) = (𝐹𝑋)
76imaeq1i 5463 . . . . . . . . 9 (((𝐹𝑋) ↾ 𝑋) “ 𝑠) = ((𝐹𝑋) “ 𝑠)
8 cnvresima 5623 . . . . . . . . 9 (((𝐹𝑋) ↾ 𝑋) “ 𝑠) = (((𝐹𝑋) “ 𝑠) ∩ 𝑋)
9 cnvresima 5623 . . . . . . . . 9 ((𝐹𝑋) “ 𝑠) = ((𝐹𝑠) ∩ 𝑋)
107, 8, 93eqtr3i 2652 . . . . . . . 8 (((𝐹𝑋) “ 𝑠) ∩ 𝑋) = ((𝐹𝑠) ∩ 𝑋)
1110eleq1i 2692 . . . . . . 7 ((((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽 ↔ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽)
1211a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 (𝐹𝑋) → ((((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽 ↔ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽))
1312rabbiia 3185 . . . . 5 {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽}
144, 13eqtr2i 2645 . . . 4 {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 ((𝐹𝑋) “ 𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽}
15 qtopval.1 . . . . 5 𝑋 = 𝐽
1615qtopval 21498 . . . 4 ((𝐽 ∈ V ∧ 𝐹𝑉) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
17 resexg 5442 . . . . 5 (𝐹𝑉 → (𝐹𝑋) ∈ V)
1815qtopval 21498 . . . . 5 ((𝐽 ∈ V ∧ (𝐹𝑋) ∈ V) → (𝐽 qTop (𝐹𝑋)) = {𝑠 ∈ 𝒫 ((𝐹𝑋) “ 𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽})
1917, 18sylan2 491 . . . 4 ((𝐽 ∈ V ∧ 𝐹𝑉) → (𝐽 qTop (𝐹𝑋)) = {𝑠 ∈ 𝒫 ((𝐹𝑋) “ 𝑋) ∣ (((𝐹𝑋) “ 𝑠) ∩ 𝑋) ∈ 𝐽})
2014, 16, 193eqtr4a 2682 . . 3 ((𝐽 ∈ V ∧ 𝐹𝑉) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹𝑋)))
2120expcom 451 . 2 (𝐹𝑉 → (𝐽 ∈ V → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹𝑋))))
22 df-qtop 16167 . . . . 5 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
2322reldmmpt2 6771 . . . 4 Rel dom qTop
2423ovprc1 6684 . . 3 𝐽 ∈ V → (𝐽 qTop 𝐹) = ∅)
2523ovprc1 6684 . . 3 𝐽 ∈ V → (𝐽 qTop (𝐹𝑋)) = ∅)
2624, 25eqtr4d 2659 . 2 𝐽 ∈ V → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹𝑋)))
2721, 26pm2.61d1 171 1 (𝐹𝑉 → (𝐽 qTop 𝐹) = (𝐽 qTop (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  c0 3915  𝒫 cpw 4158   cuni 4436  ccnv 5113  cres 5116  cima 5117  (class class class)co 6650   qTop cqtop 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167
This theorem is referenced by:  qtoptop2  21502
  Copyright terms: Public domain W3C validator