| Step | Hyp | Ref
| Expression |
| 1 | | pssss 3702 |
. . . 4
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) |
| 2 | | ssexg 4804 |
. . . 4
⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ ω) → 𝐵 ∈ V) |
| 3 | 1, 2 | sylan 488 |
. . 3
⊢ ((𝐵 ⊊ 𝐴 ∧ 𝐴 ∈ ω) → 𝐵 ∈ V) |
| 4 | 3 | ancoms 469 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ∈ V) |
| 5 | | psseq2 3695 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ∅)) |
| 6 | | rexeq 3139 |
. . . . . . . 8
⊢ (𝑧 = ∅ → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥)) |
| 7 | 5, 6 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = ∅ → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ ∅ → ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥))) |
| 8 | 7 | albidv 1849 |
. . . . . 6
⊢ (𝑧 = ∅ → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ ∅ → ∃𝑥 ∈ ∅ 𝑤 ≈ 𝑥))) |
| 9 | | psseq2 3695 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝑦)) |
| 10 | | rexeq 3139 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) |
| 11 | 9, 10 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥))) |
| 12 | 11 | albidv 1849 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥))) |
| 13 | | psseq2 3695 |
. . . . . . . 8
⊢ (𝑧 = suc 𝑦 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ suc 𝑦)) |
| 14 | | rexeq 3139 |
. . . . . . . 8
⊢ (𝑧 = suc 𝑦 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 15 | 13, 14 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = suc 𝑦 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 16 | 15 | albidv 1849 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 17 | | psseq2 3695 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ 𝐴)) |
| 18 | | rexeq 3139 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥)) |
| 19 | 17, 18 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → ((𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ (𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥))) |
| 20 | 19 | albidv 1849 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (∀𝑤(𝑤 ⊊ 𝑧 → ∃𝑥 ∈ 𝑧 𝑤 ≈ 𝑥) ↔ ∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥))) |
| 21 | | npss0 4014 |
. . . . . . . 8
⊢ ¬
𝑤 ⊊
∅ |
| 22 | 21 | pm2.21i 116 |
. . . . . . 7
⊢ (𝑤 ⊊ ∅ →
∃𝑥 ∈ ∅
𝑤 ≈ 𝑥) |
| 23 | 22 | ax-gen 1722 |
. . . . . 6
⊢
∀𝑤(𝑤 ⊊ ∅ →
∃𝑥 ∈ ∅
𝑤 ≈ 𝑥) |
| 24 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑦 ∈ ω |
| 25 | | nfa1 2028 |
. . . . . . 7
⊢
Ⅎ𝑤∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) |
| 26 | | elequ1 1997 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
| 27 | 26 | biimpcd 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑤 → (𝑧 = 𝑦 → 𝑦 ∈ 𝑤)) |
| 28 | 27 | con3d 148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑤 → (¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦)) |
| 29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑦 ∈ 𝑤 → ¬ 𝑧 = 𝑦)) |
| 30 | | pssss 3702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ⊊ suc 𝑦 → 𝑤 ⊆ suc 𝑦) |
| 31 | 30 | sseld 3602 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ⊊ suc 𝑦 → (𝑧 ∈ 𝑤 → 𝑧 ∈ suc 𝑦)) |
| 32 | | elsuci 5791 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ suc 𝑦 → (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦)) |
| 33 | 32 | ord 392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ suc 𝑦 → (¬ 𝑧 ∈ 𝑦 → 𝑧 = 𝑦)) |
| 34 | 33 | con1d 139 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ suc 𝑦 → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦)) |
| 35 | 31, 34 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ⊊ suc 𝑦 → (𝑧 ∈ 𝑤 → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦))) |
| 36 | 35 | imp 445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑧 = 𝑦 → 𝑧 ∈ 𝑦)) |
| 37 | 29, 36 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑧 ∈ 𝑤) → (¬ 𝑦 ∈ 𝑤 → 𝑧 ∈ 𝑦)) |
| 38 | 37 | impancom 456 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) → (𝑧 ∈ 𝑤 → 𝑧 ∈ 𝑦)) |
| 39 | 38 | ssrdv 3609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) → 𝑤 ⊆ 𝑦) |
| 40 | 39 | anim1i 592 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → (𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦)) |
| 41 | | dfpss2 3692 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ⊊ 𝑦 ↔ (𝑤 ⊆ 𝑦 ∧ ¬ 𝑤 = 𝑦)) |
| 42 | 40, 41 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → 𝑤 ⊊ 𝑦) |
| 43 | | elelsuc 5797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑦 → 𝑥 ∈ suc 𝑦) |
| 44 | 43 | anim1i 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑤 ≈ 𝑥) → (𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑥)) |
| 45 | 44 | reximi2 3010 |
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝑦 𝑤 ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 46 | 42, 45 | imim12i 62 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (((𝑤 ⊊ suc 𝑦 ∧ ¬ 𝑦 ∈ 𝑤) ∧ ¬ 𝑤 = 𝑦) → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 47 | 46 | exp4c 636 |
. . . . . . . . . . . 12
⊢ ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 48 | 47 | sps 2055 |
. . . . . . . . . . 11
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 49 | 48 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧
∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → (¬ 𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 50 | 49 | com4t 93 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ 𝑤 → (¬ 𝑤 = 𝑦 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)))) |
| 51 | | anidm 676 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦) ↔ 𝑤 ⊊ suc 𝑦) |
| 52 | | ssdif 3745 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ⊆ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ (suc 𝑦 ∖ {𝑦})) |
| 53 | | nnord 7073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω → Ord 𝑦) |
| 54 | | orddif 5820 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑦 → 𝑦 = (suc 𝑦 ∖ {𝑦})) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω → 𝑦 = (suc 𝑦 ∖ {𝑦})) |
| 56 | 55 | sseq2d 3633 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ↔ (𝑤 ∖ {𝑦}) ⊆ (suc 𝑦 ∖ {𝑦}))) |
| 57 | 52, 56 | syl5ibr 236 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ω → (𝑤 ⊆ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ 𝑦)) |
| 58 | 30, 57 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ω → (𝑤 ⊊ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊆ 𝑦)) |
| 59 | | pssnel 4039 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ⊊ suc 𝑦 → ∃𝑧(𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤)) |
| 60 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∖ {𝑦}) = 𝑦 → (𝑧 ∈ (𝑤 ∖ {𝑦}) ↔ 𝑧 ∈ 𝑦)) |
| 61 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ (𝑤 ∖ {𝑦}) → 𝑧 ∈ 𝑤) |
| 62 | 60, 61 | syl6bir 244 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∖ {𝑦}) = 𝑦 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 64 | | eleq1a 2696 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝑤 → (𝑧 = 𝑦 → 𝑧 ∈ 𝑤)) |
| 65 | 33, 64 | sylan9r 690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → (¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → (¬ 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑤)) |
| 67 | 63, 66 | pm2.61d 170 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) ∧ (𝑤 ∖ {𝑦}) = 𝑦) → 𝑧 ∈ 𝑤) |
| 68 | 67 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → ((𝑤 ∖ {𝑦}) = 𝑦 → 𝑧 ∈ 𝑤)) |
| 69 | 68 | con3d 148 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑧 ∈ suc 𝑦) → (¬ 𝑧 ∈ 𝑤 → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 70 | 69 | expimpd 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤) → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 71 | 70 | exlimdv 1861 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑤 → (∃𝑧(𝑧 ∈ suc 𝑦 ∧ ¬ 𝑧 ∈ 𝑤) → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 72 | 59, 71 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑤 → (𝑤 ⊊ suc 𝑦 → ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 73 | 58, 72 | im2anan9r 881 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑤 ⊊ suc 𝑦 ∧ 𝑤 ⊊ suc 𝑦) → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦))) |
| 74 | 51, 73 | syl5bir 233 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑤 ⊊ suc 𝑦 → ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦))) |
| 75 | | dfpss2 3692 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∖ {𝑦}) ⊊ 𝑦 ↔ ((𝑤 ∖ {𝑦}) ⊆ 𝑦 ∧ ¬ (𝑤 ∖ {𝑦}) = 𝑦)) |
| 76 | 74, 75 | syl6ibr 242 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑤 ⊊ suc 𝑦 → (𝑤 ∖ {𝑦}) ⊊ 𝑦)) |
| 77 | | psseq1 3694 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (𝑤 ⊊ 𝑦 ↔ 𝑧 ⊊ 𝑦)) |
| 78 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → (𝑤 ≈ 𝑥 ↔ 𝑧 ≈ 𝑥)) |
| 79 | 78 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥)) |
| 80 | 77, 79 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ((𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) ↔ (𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥))) |
| 81 | 80 | cbvalv 2273 |
. . . . . . . . . . . . 13
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) ↔ ∀𝑧(𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥)) |
| 82 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 83 | | difss 3737 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∖ {𝑦}) ⊆ 𝑤 |
| 84 | 82, 83 | ssexi 4803 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∖ {𝑦}) ∈ V |
| 85 | | psseq1 3694 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (𝑧 ⊊ 𝑦 ↔ (𝑤 ∖ {𝑦}) ⊊ 𝑦)) |
| 86 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (𝑧 ≈ 𝑥 ↔ (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 87 | 86 | rexbidv 3052 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → (∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 88 | 85, 87 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑤 ∖ {𝑦}) → ((𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥) ↔ ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥))) |
| 89 | 84, 88 | spcv 3299 |
. . . . . . . . . . . . 13
⊢
(∀𝑧(𝑧 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑧 ≈ 𝑥) → ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 90 | 81, 89 | sylbi 207 |
. . . . . . . . . . . 12
⊢
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → ((𝑤 ∖ {𝑦}) ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 91 | 76, 90 | sylan9 689 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 92 | | ordsucelsuc 7022 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝑦 → (𝑥 ∈ 𝑦 ↔ suc 𝑥 ∈ suc 𝑦)) |
| 93 | 92 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑦 → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 94 | 53, 93 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 95 | 94 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (𝑥 ∈ 𝑦 → suc 𝑥 ∈ suc 𝑦)) |
| 96 | 95 | adantrd 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → suc 𝑥 ∈ suc 𝑦)) |
| 97 | | elnn 7075 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω) → 𝑥 ∈ ω) |
| 98 | | snex 4908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
{〈𝑦, 𝑥〉} ∈
V |
| 99 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑦 ∈ V |
| 100 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑥 ∈ V |
| 101 | 99, 100 | f1osn 6176 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
{〈𝑦, 𝑥〉}:{𝑦}–1-1-onto→{𝑥} |
| 102 | | f1oen3g 7971 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(({〈𝑦, 𝑥〉} ∈ V ∧
{〈𝑦, 𝑥〉}:{𝑦}–1-1-onto→{𝑥}) → {𝑦} ≈ {𝑥}) |
| 103 | 98, 101, 102 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑦} ≈ {𝑥} |
| 104 | 103 | jctr 565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∖ {𝑦}) ≈ 𝑥 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ {𝑦} ≈ {𝑥})) |
| 105 | | nnord 7073 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ω → Ord 𝑥) |
| 106 | | orddisj 5762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝑥 → (𝑥 ∩ {𝑥}) = ∅) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ω → (𝑥 ∩ {𝑥}) = ∅) |
| 108 | | incom 3805 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝑦} ∩ (𝑤 ∖ {𝑦})) = ((𝑤 ∖ {𝑦}) ∩ {𝑦}) |
| 109 | | disjdif 4040 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({𝑦} ∩ (𝑤 ∖ {𝑦})) = ∅ |
| 110 | 108, 109 | eqtr3i 2646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ |
| 111 | 107, 110 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ω → (((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) |
| 112 | | unen 8040 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ {𝑦} ≈ {𝑥}) ∧ (((𝑤 ∖ {𝑦}) ∩ {𝑦}) = ∅ ∧ (𝑥 ∩ {𝑥}) = ∅)) → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥})) |
| 113 | 104, 111,
112 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ 𝑥 ∈ ω) → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥})) |
| 114 | | difsnid 4341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝑤 → ((𝑤 ∖ {𝑦}) ∪ {𝑦}) = 𝑤) |
| 115 | 114 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑤 → 𝑤 = ((𝑤 ∖ {𝑦}) ∪ {𝑦})) |
| 116 | | df-suc 5729 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) |
| 117 | 116 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑤 → suc 𝑥 = (𝑥 ∪ {𝑥})) |
| 118 | 115, 117 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝑤 → (𝑤 ≈ suc 𝑥 ↔ ((𝑤 ∖ {𝑦}) ∪ {𝑦}) ≈ (𝑥 ∪ {𝑥}))) |
| 119 | 113, 118 | syl5ibr 236 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑤 → (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ 𝑥 ∈ ω) → 𝑤 ≈ suc 𝑥)) |
| 120 | 97, 119 | sylan2i 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑤 → (((𝑤 ∖ {𝑦}) ≈ 𝑥 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ω)) → 𝑤 ≈ suc 𝑥)) |
| 121 | 120 | exp4d 637 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑤 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 → (𝑥 ∈ 𝑦 → (𝑦 ∈ ω → 𝑤 ≈ suc 𝑥)))) |
| 122 | 121 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → (𝑦 ∈ ω → (𝑥 ∈ 𝑦 → ((𝑤 ∖ {𝑦}) ≈ 𝑥 → 𝑤 ≈ suc 𝑥)))) |
| 123 | 122 | imp4b 613 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → 𝑤 ≈ suc 𝑥)) |
| 124 | 96, 123 | jcad 555 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → (suc 𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥))) |
| 125 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → (𝑤 ≈ 𝑧 ↔ 𝑤 ≈ suc 𝑥)) |
| 126 | 125 | rspcev 3309 |
. . . . . . . . . . . . . . 15
⊢ ((suc
𝑥 ∈ suc 𝑦 ∧ 𝑤 ≈ suc 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧) |
| 127 | 124, 126 | syl6 35 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → ((𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧)) |
| 128 | 127 | exlimdv 1861 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (∃𝑥(𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥) → ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧)) |
| 129 | | df-rex 2918 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ (𝑤 ∖ {𝑦}) ≈ 𝑥)) |
| 130 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑧)) |
| 131 | 130 | cbvrexv 3172 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈ suc
𝑦𝑤 ≈ 𝑥 ↔ ∃𝑧 ∈ suc 𝑦𝑤 ≈ 𝑧) |
| 132 | 128, 129,
131 | 3imtr4g 285 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) → (∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 133 | 132 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (∃𝑥 ∈ 𝑦 (𝑤 ∖ {𝑦}) ≈ 𝑥 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 134 | 91, 133 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ω) ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 135 | 134 | expl 648 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑤 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 136 | 82 | eqelsuc 5806 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → 𝑤 ∈ suc 𝑦) |
| 137 | 82 | enref 7988 |
. . . . . . . . . . 11
⊢ 𝑤 ≈ 𝑤 |
| 138 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑤 ≈ 𝑥 ↔ 𝑤 ≈ 𝑤)) |
| 139 | 138 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ suc 𝑦 ∧ 𝑤 ≈ 𝑤) → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 140 | 136, 137,
139 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥) |
| 141 | 140 | 2a1d 26 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑦 ∈ ω ∧ ∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 142 | 50, 135, 141 | pm2.61ii 177 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧
∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥)) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥)) |
| 143 | 142 | ex 450 |
. . . . . . 7
⊢ (𝑦 ∈ ω →
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → (𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 144 | 24, 25, 143 | alrimd 2084 |
. . . . . 6
⊢ (𝑦 ∈ ω →
(∀𝑤(𝑤 ⊊ 𝑦 → ∃𝑥 ∈ 𝑦 𝑤 ≈ 𝑥) → ∀𝑤(𝑤 ⊊ suc 𝑦 → ∃𝑥 ∈ suc 𝑦𝑤 ≈ 𝑥))) |
| 145 | 8, 12, 16, 20, 23, 144 | finds 7092 |
. . . . 5
⊢ (𝐴 ∈ ω →
∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥)) |
| 146 | | psseq1 3694 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑤 ⊊ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
| 147 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → (𝑤 ≈ 𝑥 ↔ 𝐵 ≈ 𝑥)) |
| 148 | 147 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥)) |
| 149 | 146, 148 | imbi12d 334 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥) ↔ (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 150 | 149 | spcgv 3293 |
. . . . 5
⊢ (𝐵 ∈ V → (∀𝑤(𝑤 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝑤 ≈ 𝑥) → (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 151 | 145, 150 | syl5 34 |
. . . 4
⊢ (𝐵 ∈ V → (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 152 | 151 | com3l 89 |
. . 3
⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → (𝐵 ∈ V → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥))) |
| 153 | 152 | imp 445 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (𝐵 ∈ V → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥)) |
| 154 | 4, 153 | mpd 15 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) |