| Step | Hyp | Ref
| Expression |
| 1 | | eleq2 2690 |
. . . 4
⊢ (𝑥 = ∅ → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∅)) |
| 2 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) =
(𝑅1‘∅)) |
| 3 | 2 | breq2d 4665 |
. . . 4
⊢ (𝑥 = ∅ →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑥) ↔
(𝑅1‘𝐵) ≺
(𝑅1‘∅))) |
| 4 | 1, 3 | imbi12d 334 |
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ ∅ →
(𝑅1‘𝐵) ≺
(𝑅1‘∅)))) |
| 5 | | eleq2 2690 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝑦)) |
| 6 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
| 7 | 6 | breq2d 4665 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘𝑦))) |
| 8 | 5, 7 | imbi12d 334 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)))) |
| 9 | | eleq2 2690 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ suc 𝑦)) |
| 10 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
| 11 | 10 | breq2d 4665 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦))) |
| 12 | 9, 11 | imbi12d 334 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ suc 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦)))) |
| 13 | | eleq2 2690 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ 𝐴)) |
| 14 | | fveq2 6191 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑅1‘𝑥) =
(𝑅1‘𝐴)) |
| 15 | 14 | breq2d 4665 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑅1‘𝐵) ≺
(𝑅1‘𝑥) ↔ (𝑅1‘𝐵) ≺
(𝑅1‘𝐴))) |
| 16 | 13, 15 | imbi12d 334 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴)))) |
| 17 | | noel 3919 |
. . . 4
⊢ ¬
𝐵 ∈
∅ |
| 18 | 17 | pm2.21i 116 |
. . 3
⊢ (𝐵 ∈ ∅ →
(𝑅1‘𝐵) ≺
(𝑅1‘∅)) |
| 19 | | elsuci 5791 |
. . . . 5
⊢ (𝐵 ∈ suc 𝑦 → (𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦)) |
| 20 | | sdomtr 8098 |
. . . . . . . . 9
⊢
(((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) ∧
(𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦)) →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)) |
| 21 | 20 | expcom 451 |
. . . . . . . 8
⊢
((𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦) →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
| 22 | | fvex 6201 |
. . . . . . . . . 10
⊢
(𝑅1‘𝑦) ∈ V |
| 23 | 22 | canth2 8113 |
. . . . . . . . 9
⊢
(𝑅1‘𝑦) ≺ 𝒫
(𝑅1‘𝑦) |
| 24 | | r1suc 8633 |
. . . . . . . . 9
⊢ (𝑦 ∈ On →
(𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
| 25 | 23, 24 | syl5breqr 4691 |
. . . . . . . 8
⊢ (𝑦 ∈ On →
(𝑅1‘𝑦) ≺ (𝑅1‘suc
𝑦)) |
| 26 | 21, 25 | syl11 33 |
. . . . . . 7
⊢
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
| 27 | 26 | imim2i 16 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
| 28 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝐵 = 𝑦 → (𝑅1‘𝐵) =
(𝑅1‘𝑦)) |
| 29 | 28 | breq1d 4663 |
. . . . . . . 8
⊢ (𝐵 = 𝑦 → ((𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦) ↔ (𝑅1‘𝑦) ≺
(𝑅1‘suc 𝑦))) |
| 30 | 25, 29 | syl5ibr 236 |
. . . . . . 7
⊢ (𝐵 = 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦))) |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 = 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
| 32 | 27, 31 | jaod 395 |
. . . . 5
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → ((𝐵 ∈ 𝑦 ∨ 𝐵 = 𝑦) → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
| 33 | 19, 32 | syl5 34 |
. . . 4
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑦 ∈ On →
(𝑅1‘𝐵) ≺ (𝑅1‘suc
𝑦)))) |
| 34 | 33 | com3r 87 |
. . 3
⊢ (𝑦 ∈ On → ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ suc 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘suc 𝑦)))) |
| 35 | | limuni 5785 |
. . . . . . 7
⊢ (Lim
𝑥 → 𝑥 = ∪ 𝑥) |
| 36 | 35 | eleq2d 2687 |
. . . . . 6
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ∪ 𝑥)) |
| 37 | | eluni2 4440 |
. . . . . 6
⊢ (𝐵 ∈ ∪ 𝑥
↔ ∃𝑦 ∈
𝑥 𝐵 ∈ 𝑦) |
| 38 | 36, 37 | syl6bb 276 |
. . . . 5
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦)) |
| 39 | | r19.29 3072 |
. . . . . . 7
⊢
((∀𝑦 ∈
𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦) → ∃𝑦 ∈ 𝑥 ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦)) |
| 40 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(𝑅1‘𝑥) ∈ V |
| 41 | 40 | a1i 11 |
. . . . . . . . . 10
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) ∈ V) |
| 42 | | ssiun2 4563 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 43 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 44 | | r1lim 8635 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 45 | 43, 44 | mpan 706 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
| 46 | 45 | sseq2d 3633 |
. . . . . . . . . . 11
⊢ (Lim
𝑥 →
((𝑅1‘𝑦) ⊆ (𝑅1‘𝑥) ↔
(𝑅1‘𝑦) ⊆ ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦))) |
| 47 | 42, 46 | syl5ibr 236 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ⊆
(𝑅1‘𝑥))) |
| 48 | | ssdomg 8001 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑥) ∈ V →
((𝑅1‘𝑦) ⊆ (𝑅1‘𝑥) →
(𝑅1‘𝑦) ≼ (𝑅1‘𝑥))) |
| 49 | 41, 47, 48 | sylsyld 61 |
. . . . . . . . 9
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ≼
(𝑅1‘𝑥))) |
| 50 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦))) |
| 51 | 50 | imp 445 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) |
| 52 | | sdomdomtr 8093 |
. . . . . . . . . . 11
⊢
(((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) ∧
(𝑅1‘𝑦) ≼ (𝑅1‘𝑥)) →
(𝑅1‘𝐵) ≺ (𝑅1‘𝑥)) |
| 53 | 52 | expcom 451 |
. . . . . . . . . 10
⊢
((𝑅1‘𝑦) ≼ (𝑅1‘𝑥) →
((𝑅1‘𝐵) ≺ (𝑅1‘𝑦) →
(𝑅1‘𝐵) ≺ (𝑅1‘𝑥))) |
| 54 | 51, 53 | syl5 34 |
. . . . . . . . 9
⊢
((𝑅1‘𝑦) ≼ (𝑅1‘𝑥) → (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
| 55 | 49, 54 | syl6 35 |
. . . . . . . 8
⊢ (Lim
𝑥 → (𝑦 ∈ 𝑥 → (((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
| 56 | 55 | rexlimdv 3030 |
. . . . . . 7
⊢ (Lim
𝑥 → (∃𝑦 ∈ 𝑥 ((𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
| 57 | 39, 56 | syl5 34 |
. . . . . 6
⊢ (Lim
𝑥 → ((∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) ∧ ∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥))) |
| 58 | 57 | expcomd 454 |
. . . . 5
⊢ (Lim
𝑥 → (∃𝑦 ∈ 𝑥 𝐵 ∈ 𝑦 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
| 59 | 38, 58 | sylbid 230 |
. . . 4
⊢ (Lim
𝑥 → (𝐵 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
| 60 | 59 | com23 86 |
. . 3
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑦)) → (𝐵 ∈ 𝑥 → (𝑅1‘𝐵) ≺
(𝑅1‘𝑥)))) |
| 61 | 4, 8, 12, 16, 18, 34, 60 | tfinds 7059 |
. 2
⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴))) |
| 62 | 61 | imp 445 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → (𝑅1‘𝐵) ≺
(𝑅1‘𝐴)) |