MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eqpr Structured version   Visualization version   GIF version

Theorem en2eqpr 8830
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
StepHypRef Expression
1 2onn 7720 . . . . . 6 2𝑜 ∈ ω
2 nnfi 8153 . . . . . 6 (2𝑜 ∈ ω → 2𝑜 ∈ Fin)
31, 2ax-mp 5 . . . . 5 2𝑜 ∈ Fin
4 simpl1 1064 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ≈ 2𝑜)
5 enfii 8177 . . . . 5 ((2𝑜 ∈ Fin ∧ 𝐶 ≈ 2𝑜) → 𝐶 ∈ Fin)
63, 4, 5sylancr 695 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ∈ Fin)
7 simpl2 1065 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐴𝐶)
8 simpl3 1066 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐵𝐶)
9 prssi 4353 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
107, 8, 9syl2anc 693 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ 𝐶)
11 pr2nelem 8827 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
12113expa 1265 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
13123adantl1 1217 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
144ensymd 8007 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 2𝑜𝐶)
15 entr 8008 . . . . 5 (({𝐴, 𝐵} ≈ 2𝑜 ∧ 2𝑜𝐶) → {𝐴, 𝐵} ≈ 𝐶)
1613, 14, 15syl2anc 693 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 𝐶)
17 fisseneq 8171 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶)
186, 10, 16, 17syl3anc 1326 . . 3 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} = 𝐶)
1918eqcomd 2628 . 2 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
2019ex 450 1 ((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wss 3574  {cpr 4179   class class class wbr 4653  ωcom 7065  2𝑜c2o 7554  cen 7952  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  isprm2lem  15394  en2top  20789
  Copyright terms: Public domain W3C validator