MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   GIF version

Theorem enfin1ai 9206
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))

Proof of Theorem enfin1ai
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8005 . . 3 (𝐴𝐵𝐵𝐴)
2 bren 7964 . . 3 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
31, 2sylib 208 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐵1-1-onto𝐴)
4 elpwi 4168 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
5 simplr 792 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐴 ∈ FinIa)
6 imassrn 5477 . . . . . . . . . 10 (𝑓𝑥) ⊆ ran 𝑓
7 f1of 6137 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
87ad2antrr 762 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵𝐴)
9 frn 6053 . . . . . . . . . . 11 (𝑓:𝐵𝐴 → ran 𝑓𝐴)
108, 9syl 17 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ran 𝑓𝐴)
116, 10syl5ss 3614 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ⊆ 𝐴)
12 fin1ai 9115 . . . . . . . . 9 ((𝐴 ∈ FinIa ∧ (𝑓𝑥) ⊆ 𝐴) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
135, 11, 12syl2anc 693 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
14 f1of1 6136 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
1514ad2antrr 762 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵1-1𝐴)
16 simpr 477 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥𝐵)
17 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
1817a1i 11 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥 ∈ V)
19 f1imaeng 8016 . . . . . . . . . . 11 ((𝑓:𝐵1-1𝐴𝑥𝐵𝑥 ∈ V) → (𝑓𝑥) ≈ 𝑥)
2015, 16, 18, 19syl3anc 1326 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
21 enfi 8176 . . . . . . . . . 10 ((𝑓𝑥) ≈ 𝑥 → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
2220, 21syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
23 df-f1 5893 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ Fun 𝑓))
2423simprbi 480 . . . . . . . . . . . . 13 (𝑓:𝐵1-1𝐴 → Fun 𝑓)
25 imadif 5973 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
2615, 24, 253syl 18 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
27 f1ofo 6144 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
28 foima 6120 . . . . . . . . . . . . . . 15 (𝑓:𝐵onto𝐴 → (𝑓𝐵) = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
3029ad2antrr 762 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝐵) = 𝐴)
3130difeq1d 3727 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝐵) ∖ (𝑓𝑥)) = (𝐴 ∖ (𝑓𝑥)))
3226, 31eqtrd 2656 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = (𝐴 ∖ (𝑓𝑥)))
33 difssd 3738 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ⊆ 𝐵)
34 vex 3203 . . . . . . . . . . . . . . 15 𝑓 ∈ V
357adantr 481 . . . . . . . . . . . . . . 15 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝑓:𝐵𝐴)
36 dmfex 7124 . . . . . . . . . . . . . . 15 ((𝑓 ∈ V ∧ 𝑓:𝐵𝐴) → 𝐵 ∈ V)
3734, 35, 36sylancr 695 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ V)
3837adantr 481 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐵 ∈ V)
39 difexg 4808 . . . . . . . . . . . . 13 (𝐵 ∈ V → (𝐵𝑥) ∈ V)
4038, 39syl 17 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ∈ V)
41 f1imaeng 8016 . . . . . . . . . . . 12 ((𝑓:𝐵1-1𝐴 ∧ (𝐵𝑥) ⊆ 𝐵 ∧ (𝐵𝑥) ∈ V) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4215, 33, 40, 41syl3anc 1326 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4332, 42eqbrtrrd 4677 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥))
44 enfi 8176 . . . . . . . . . 10 ((𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4543, 44syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4622, 45orbi12d 746 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4713, 46mpbid 222 . . . . . . 7 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
484, 47sylan2 491 . . . . . 6 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
4948ralrimiva 2966 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
50 isfin1a 9114 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5137, 50syl 17 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5249, 51mpbird 247 . . . 4 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ FinIa)
5352ex 450 . . 3 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
5453exlimiv 1858 . 2 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
553, 54syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117  Fun wfun 5882  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cen 7952  Fincfn 7955  FinIacfin1a 9100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-fin 7959  df-fin1a 9107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator