![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin1-2 | Structured version Visualization version GIF version |
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isfin1-2 | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3212 | . 2 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ V) | |
2 | elex 3212 | . . 3 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V) | |
3 | pwexb 6975 | . . . 4 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
4 | pwexb 6975 | . . . 4 ⊢ (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) | |
5 | 3, 4 | bitri 264 | . . 3 ⊢ (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) |
6 | 2, 5 | sylibr 224 | . 2 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) |
7 | ominf 8172 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
8 | pwfi 8261 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
9 | pwfi 8261 | . . . . . . . 8 ⊢ (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) | |
10 | 8, 9 | bitri 264 | . . . . . . 7 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) |
11 | domfi 8181 | . . . . . . . 8 ⊢ ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin) | |
12 | 11 | expcom 451 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin)) |
13 | 10, 12 | syl5bi 232 | . . . . . 6 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin)) |
14 | 7, 13 | mtoi 190 | . . . . 5 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin) |
15 | fineqvlem 8174 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | |
16 | 15 | ex 450 | . . . . 5 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴)) |
17 | 14, 16 | impbid2 216 | . . . 4 ⊢ (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin)) |
18 | 17 | con2bid 344 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
19 | isfin4-2 9136 | . . . 4 ⊢ (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) | |
20 | 5, 19 | sylbi 207 | . . 3 ⊢ (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
21 | 18, 20 | bitr4d 271 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)) |
22 | 1, 6, 21 | pm5.21nii 368 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 𝒫 cpw 4158 class class class wbr 4653 ωcom 7065 ≼ cdom 7953 Fincfn 7955 FinIVcfin4 9102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fin4 9109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |