![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enqbreq2 | Structured version Visualization version GIF version |
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enqbreq2 | ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7205 | . . 3 ⊢ (𝐴 ∈ (N × N) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1st2nd2 7205 | . . 3 ⊢ (𝐵 ∈ (N × N) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
3 | 1, 2 | breqan12d 4669 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
4 | xp1st 7198 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
5 | xp2nd 7199 | . . . 4 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
6 | 4, 5 | jca 554 | . . 3 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N)) |
7 | xp1st 7198 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (1st ‘𝐵) ∈ N) | |
8 | xp2nd 7199 | . . . 4 ⊢ (𝐵 ∈ (N × N) → (2nd ‘𝐵) ∈ N) | |
9 | 7, 8 | jca 554 | . . 3 ⊢ (𝐵 ∈ (N × N) → ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) |
10 | enqbreq 9741 | . . 3 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ ((1st ‘𝐵) ∈ N ∧ (2nd ‘𝐵) ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) | |
11 | 6, 9, 10 | syl2an 494 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ~Q 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)))) |
12 | mulcompi 9718 | . . . 4 ⊢ ((2nd ‘𝐴) ·N (1st ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)) | |
13 | 12 | eqeq2i 2634 | . . 3 ⊢ (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴))) |
14 | 13 | a1i 11 | . 2 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((2nd ‘𝐴) ·N (1st ‘𝐵)) ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
15 | 3, 11, 14 | 3bitrd 294 | 1 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 × cxp 5112 ‘cfv 5888 (class class class)co 6650 1st c1st 7166 2nd c2nd 7167 Ncnpi 9666 ·N cmi 9668 ~Q ceq 9673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-omul 7565 df-ni 9694 df-mi 9696 df-enq 9733 |
This theorem is referenced by: adderpqlem 9776 mulerpqlem 9777 ltsonq 9791 lterpq 9792 |
Copyright terms: Public domain | W3C validator |