MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqbreq2 Structured version   Visualization version   GIF version

Theorem enqbreq2 9742
Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
enqbreq2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))

Proof of Theorem enqbreq2
StepHypRef Expression
1 1st2nd2 7205 . . 3 (𝐴 ∈ (N × N) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 7205 . . 3 (𝐵 ∈ (N × N) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2breqan12d 4669 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩))
4 xp1st 7198 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
5 xp2nd 7199 . . . 4 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
64, 5jca 554 . . 3 (𝐴 ∈ (N × N) → ((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N))
7 xp1st 7198 . . . 4 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
8 xp2nd 7199 . . . 4 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
97, 8jca 554 . . 3 (𝐵 ∈ (N × N) → ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N))
10 enqbreq 9741 . . 3 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ ((1st𝐵) ∈ N ∧ (2nd𝐵) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
116, 9, 10syl2an 494 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ~Q ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵))))
12 mulcompi 9718 . . . 4 ((2nd𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (2nd𝐴))
1312eqeq2i 2634 . . 3 (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴)))
1413a1i 11 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (((1st𝐴) ·N (2nd𝐵)) = ((2nd𝐴) ·N (1st𝐵)) ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
153, 11, 143bitrd 294 1 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) = ((1st𝐵) ·N (2nd𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Ncnpi 9666   ·N cmi 9668   ~Q ceq 9673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-omul 7565  df-ni 9694  df-mi 9696  df-enq 9733
This theorem is referenced by:  adderpqlem  9776  mulerpqlem  9777  ltsonq  9791  lterpq  9792
  Copyright terms: Public domain W3C validator