MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgen Structured version   Visualization version   GIF version

Theorem eqgen 17647
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqgen ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)

Proof of Theorem eqgen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (𝑋 / ) = (𝑋 / )
2 breq2 4657 . 2 ([𝑥] = 𝐴 → (𝑌 ≈ [𝑥] 𝑌𝐴))
3 simpl 473 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ∈ (SubGrp‘𝐺))
4 subgrcl 17599 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . . 8 𝑋 = (Base‘𝐺)
65subgss 17595 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
74, 6jca 554 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ∈ Grp ∧ 𝑌𝑋))
8 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
9 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
105, 8, 9eqglact 17645 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
11103expa 1265 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
127, 11sylan 488 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
13 ovex 6678 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
148, 13eqeltri 2697 . . . . . 6 ∈ V
15 ecexg 7746 . . . . . 6 ( ∈ V → [𝑥] ∈ V)
1614, 15ax-mp 5 . . . . 5 [𝑥] ∈ V
1712, 16syl6eqelr 2710 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V)
18 eqid 2622 . . . . . . . . 9 (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))) = (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))
1918, 5, 9grplactf1o 17519 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋)
2018, 5grplactfval 17516 . . . . . . . . . 10 (𝑥𝑋 → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
2120adantl 482 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
22 f1oeq1 6127 . . . . . . . . 9 (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
2321, 22syl 17 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
2419, 23mpbid 222 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
254, 24sylan 488 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
26 f1of1 6136 . . . . . 6 ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
2725, 26syl 17 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
286adantr 481 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌𝑋)
29 f1ores 6151 . . . . 5 (((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋𝑌𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
3027, 28, 29syl2anc 693 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
31 f1oen2g 7972 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌)) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
323, 17, 30, 31syl3anc 1326 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
3332, 12breqtrrd 4681 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ [𝑥] )
341, 2, 33ectocld 7814 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  cres 5116  cima 5117  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  [cec 7740   / cqs 7741  cen 7952  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  SubGrpcsubg 17588   ~QG cqg 17590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ec 7744  df-qs 7748  df-en 7956  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-eqg 17593
This theorem is referenced by:  lagsubg2  17655  sylow2blem1  18035
  Copyright terms: Public domain W3C validator