MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsupd Structured version   Visualization version   GIF version

Theorem eqsupd 8363
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
eqsupd.2 (𝜑𝐶𝐴)
eqsupd.3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
eqsupd.4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
Assertion
Ref Expression
eqsupd (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝑅,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑧)

Proof of Theorem eqsupd
StepHypRef Expression
1 eqsupd.2 . 2 (𝜑𝐶𝐴)
2 eqsupd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
32ralrimiva 2966 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝐶𝑅𝑦)
4 eqsupd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
54expr 643 . . 3 ((𝜑𝑦𝐴) → (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
65ralrimiva 2966 . 2 (𝜑 → ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
7 supmo.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqsup 8362 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1427 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653   Or wor 5034  supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-po 5035  df-so 5036  df-iota 5851  df-riota 6611  df-sup 8348
This theorem is referenced by:  supmax  8373  supiso  8381  dfgcd2  15263  esumpcvgval  30140  esum2d  30155  mblfinlem3  33448  mblfinlem4  33449  ismblfin  33450  itg2addnclem  33461  radcnvrat  38513
  Copyright terms: Public domain W3C validator