Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  radcnvrat Structured version   Visualization version   GIF version

Theorem radcnvrat 38513
Description: Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) (as in the ratio test cvgdvgrat 38512) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴𝑛) · (𝑥𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.)
Hypotheses
Ref Expression
radcnvrat.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnvrat.a (𝜑𝐴:ℕ0⟶ℂ)
radcnvrat.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvrat.rat 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
radcnvrat.z 𝑍 = (ℤ𝑀)
radcnvrat.m (𝜑𝑀 ∈ ℕ0)
radcnvrat.n0 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
radcnvrat.l (𝜑𝐷𝐿)
radcnvrat.ln0 (𝜑𝐿 ≠ 0)
Assertion
Ref Expression
radcnvrat (𝜑𝑅 = (1 / 𝐿))
Distinct variable groups:   𝑘,𝑛,𝑥,𝜑   𝐴,𝑛,𝑥   𝑘,𝐺,𝑛,𝑥   𝑘,𝑟,𝑥,𝐺   𝑘,𝐿,𝑥   𝑘,𝑍,𝑛   𝐷,𝑘   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑟)   𝐷(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑘,𝑛,𝑟)   𝐿(𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)   𝑍(𝑥,𝑟)

Proof of Theorem radcnvrat
StepHypRef Expression
1 radcnvrat.r . 2 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 xrltso 11974 . . . 4 < Or ℝ*
32a1i 11 . . 3 (𝜑 → < Or ℝ*)
4 radcnvrat.z . . . . . 6 𝑍 = (ℤ𝑀)
5 radcnvrat.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
65nn0zd 11480 . . . . . 6 (𝜑𝑀 ∈ ℤ)
74reseq2i 5393 . . . . . . 7 (𝐷𝑍) = (𝐷 ↾ (ℤ𝑀))
8 radcnvrat.l . . . . . . . 8 (𝜑𝐷𝐿)
9 radcnvrat.rat . . . . . . . . . 10 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
10 nn0ex 11298 . . . . . . . . . . 11 0 ∈ V
1110mptex 6486 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ∈ V
129, 11eqeltri 2697 . . . . . . . . 9 𝐷 ∈ V
13 climres 14306 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
146, 12, 13sylancl 694 . . . . . . . 8 (𝜑 → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
158, 14mpbird 247 . . . . . . 7 (𝜑 → (𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿)
167, 15syl5eqbr 4688 . . . . . 6 (𝜑 → (𝐷𝑍) ⇝ 𝐿)
179reseq1i 5392 . . . . . . . . 9 (𝐷𝑍) = ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍)
18 eluznn0 11757 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
195, 18sylan 488 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2019ex 450 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0))
2120ssrdv 3609 . . . . . . . . . . 11 (𝜑 → (ℤ𝑀) ⊆ ℕ0)
224, 21syl5eqss 3649 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℕ0)
2322resmptd 5452 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
2417, 23syl5eq 2668 . . . . . . . 8 (𝜑 → (𝐷𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
25 fvexd 6203 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V)
2624, 25fvmpt2d 6293 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
274peano2uzs 11742 . . . . . . . . . 10 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
2822sselda 3603 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈ ℕ0)
29 radcnvrat.a . . . . . . . . . . . 12 (𝜑𝐴:ℕ0⟶ℂ)
3029ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3128, 30syldan 487 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3227, 31sylan2 491 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3322sselda 3603 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘 ∈ ℕ0)
3429ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3533, 34syldan 487 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
36 radcnvrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
3732, 35, 36divcld 10801 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
3837abscld 14175 . . . . . . 7 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ ℝ)
3926, 38eqeltrd 2701 . . . . . 6 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) ∈ ℝ)
404, 6, 16, 39climrecl 14314 . . . . 5 (𝜑𝐿 ∈ ℝ)
41 radcnvrat.ln0 . . . . 5 (𝜑𝐿 ≠ 0)
4240, 41rereccld 10852 . . . 4 (𝜑 → (1 / 𝐿) ∈ ℝ)
4342rexrd 10089 . . 3 (𝜑 → (1 / 𝐿) ∈ ℝ*)
44 simpr 477 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
45 elrabi 3359 . . . . 5 (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → 𝑥 ∈ ℝ)
4642adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (1 / 𝐿) ∈ ℝ)
47 recn 10026 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4847abscld 14175 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
4948adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
5046, 49ltlend 10182 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5150simplbda 654 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿))
5250adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
53 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
5453biantrud 528 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5546, 49lenltd 10183 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5655adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5752, 54, 563bitr2d 296 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
58 1cnd 10056 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
5949recnd 10068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℂ)
6040recnd 10068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℂ)
6160adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℂ)
6241adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ≠ 0)
6358, 59, 61, 62divmul3d 10835 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿)))
64 eqcom 2629 . . . . . . . . . . . . . . . . 17 ((1 / 𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿))
65 eqcom 2629 . . . . . . . . . . . . . . . . 17 (1 = ((abs‘𝑥) · 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)
6663, 64, 653bitr3g 302 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1))
6766necon3bid 2838 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1))
6867biimpa 501 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1)
69 1red 10055 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
70 fvres 6207 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7170adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7271, 39eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℝ)
7337absge0d 14183 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
7473, 26breqtrrd 4681 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 0 ≤ ((𝐷𝑍)‘𝑘))
7574, 71breqtrd 4679 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 0 ≤ (𝐷𝑘))
764, 6, 8, 72, 75climge0 14315 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐿)
7740, 76, 41ne0gt0d 10174 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐿)
7840, 77elrpd 11869 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ ℝ+)
7978adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℝ+)
8049, 69, 79ltmuldivd 11919 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
8180adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
82 elun 3753 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
83 inundif 4046 . . . . . . . . . . . . . . . . . . 19 ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) = ℝ
8483eleq2i 2693 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
8582, 84bitr3i 266 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
86 elin 3796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∩ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ∈ {0}))
8786simprbi 480 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 ∈ {0})
88 elsni 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {0} → 𝑥 = 0)
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 = 0)
90 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
91 abs0 14025 . . . . . . . . . . . . . . . . . . . . . . . . 25 (abs‘0) = 0
9290, 91syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (abs‘𝑥) = 0)
9392oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿))
9460mul02d 10234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0 · 𝐿) = 0)
9593, 94sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0)
96 0lt1 10550 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
9795, 96syl6eqbr 4692 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1)
98 radcnvrat.g . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
9998, 29radcnv0 24170 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
100 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10199, 100syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
102101imp 445 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
10397, 1022thd 255 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10489, 103sylan2 491 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
105104adantlr 751 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
106 ax-resscn 9993 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℂ
107 ssdif 3745 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ ⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖ {0}))
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ∖ {0}) ⊆ (ℂ ∖ {0})
109108sseli 3599 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
110 nn0uz 11722 . . . . . . . . . . . . . . . . . . . . . 22 0 = (ℤ‘0)
1115ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → 𝑀 ∈ ℕ0)
112 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝐺𝑥) ∈ V)
113 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
11498a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))))
11510mptex 6486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V
116115a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V)
117114, 116fvmpt2d 6293 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
118117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
119 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
120 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
121119, 120oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
123 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
124 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
125118, 122, 123, 124fvmptd 6288 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
12634adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
127 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
128127, 123expcld 13008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
129126, 128mulcld 10060 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
130125, 129eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
131113, 130sylanl2 683 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
132131adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
13333adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
134133, 125syldan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
135113, 134sylanl2 683 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
13635adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
137113adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ∈ ℂ)
13933adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
140138, 139expcld 13008 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ∈ ℂ)
14136adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ≠ 0)
142 eldifsni 4320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
143142ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ≠ 0)
144139nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
145138, 143, 144expne0d 13014 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ≠ 0)
146136, 140, 141, 145mulne0d 10679 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ≠ 0)
147135, 146eqnetrd 2861 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
148147adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
149 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
150149fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘(𝑛 + 1)) = ((𝐺𝑥)‘(𝑘 + 1)))
151 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘𝑛) = ((𝐺𝑥)‘𝑘))
152150, 151oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → (((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)) = (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)))
153152fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
154153cbvmptv 4750 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑘𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
1554reseq2i 5393 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀))
15622adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆ ℕ0)
157156resmptd 5452 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
158155, 157syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
1596adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℤ)
1608adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷𝐿)
161137abscld 14175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
162161recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
16310mptex 6486 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V
164163a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V)
16572recnd 10068 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
166165adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
167 eqidd 2623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
168153adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
169 fvexd 6203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V)
170167, 168, 139, 169fvmptd 6288 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
171117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
172 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1))
173172fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴𝑛) = (𝐴‘(𝑘 + 1)))
174172oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
175173, 174oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
176 1nn0 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℕ0
177176a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 1 ∈ ℕ0)
178133, 177nn0addcld 11355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
179 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V)
180171, 175, 178, 179fvmptd 6288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
181121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
182 ovexd 6680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
183171, 181, 133, 182fvmptd 6288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
184180, 183oveq12d 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
185113, 184sylanl2 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
18632adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
187113, 178sylanl2 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
188138, 187expcld 13008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ)
189186, 136, 188, 140, 141, 145divmuldivd 10842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
190139nn0cnd 11353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℂ)
191 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 1 ∈ ℂ)
192190, 191pncan2d 10394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑘 + 1) − 𝑘) = 1)
193192oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1))
194187nn0zd 11480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℤ)
195138, 143, 144, 194expsubd 13019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)))
196138exp1d 13003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑1) = 𝑥)
197193, 195, 1963eqtr3d 2664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)) = 𝑥)
198197oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
199185, 189, 1983eqtr2d 2662 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
200199fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)))
20137adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
202201, 138absmuld 14193 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
203170, 200, 2023eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
20471, 26eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
205204adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
206205eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) = (𝐷𝑘))
207206oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)) = ((𝐷𝑘) · (abs‘𝑥)))
208162adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘𝑥) ∈ ℂ)
209166, 208mulcomd 10061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐷𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷𝑘)))
210203, 207, 2093eqtrd 2660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷𝑘)))
2114, 159, 160, 162, 164, 166, 210climmulc2 14367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
212 climres 14306 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
213159, 163, 212sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
214211, 213mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿))
215158, 214eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
216215adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
217 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) · 𝐿) ≠ 1)
218110, 4, 111, 112, 132, 148, 154, 216, 217cvgdvgrat 38512 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
219109, 218sylanl2 683 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
220 eldifi 3732 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
221 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = 𝑥 → (𝐺𝑟) = (𝐺𝑥))
222221seqeq3d 12809 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑥)))
223222eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
224223elrab3 3364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
225220, 224syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
226225ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
227219, 226bitr4d 271 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
228227an32s 846 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
229105, 228jaodan 826 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0}))) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23085, 229sylan2br 493 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
231230an32s 846 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23281, 231bitr3d 270 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23368, 232syldan 487 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
234233notbid 308 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23557, 234bitrd 268 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
236235biimpd 219 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
237236impancom 456 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23851, 237mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
239238ex 450 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
240239con2d 129 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < (abs‘𝑥)))
24146adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ)
242 simplr 792 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ)
24349adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ)
244 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥)
245242leabsd 14153 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥))
246241, 242, 243, 244, 245ltletrd 10197 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥))
247246ex 450 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥)))
248240, 247nsyld 154 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
24945, 248sylan2 491 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
25044, 249mpd 15 . . 3 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ¬ (1 / 𝐿) < 𝑥)
25142renegcld 10457 . . . . . . . . 9 (𝜑 → -(1 / 𝐿) ∈ ℝ)
252251rexrd 10089 . . . . . . . 8 (𝜑 → -(1 / 𝐿) ∈ ℝ*)
253 iooss1 12210 . . . . . . . 8 ((-(1 / 𝐿) ∈ ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
254252, 253sylan 488 . . . . . . 7 ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
255254adantlr 751 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
256 eliooord 12233 . . . . . . . . . . 11 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘𝑘 < (1 / 𝐿)))
257256simpld 475 . . . . . . . . . 10 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘)
258257rgen 2922 . . . . . . . . 9 𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘
259 ioon0 12201 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
26043, 259sylan2 491 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
261260ancoms 469 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
262261biimpar 502 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅)
263 r19.2zb 4061 . . . . . . . . . 10 ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
264262, 263sylib 208 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
265258, 264mpi 20 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
266265anasss 679 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
267266adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
268 ssrexv 3667 . . . . . 6 ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
269255, 267, 268sylc 65 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
270 simplr 792 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*)
271 xrltnle 10105 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥))
272 xrltle 11982 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿)))
273271, 272sylbird 250 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
274252, 273sylan2 491 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝜑) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
275274ancoms 469 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
276275imp 445 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿))
277 iooss1 12210 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
278270, 276, 277syl2anc 693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
279278sselda 3603 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿)))
280279, 257syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘)
281280ralrimiva 2966 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
28240, 77recgt0d 10958 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐿))
28342, 42, 282, 282addgt0d 10602 . . . . . . . . . . . 12 (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿)))
28442recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (1 / 𝐿) ∈ ℂ)
285284, 284subnegd 10399 . . . . . . . . . . . 12 (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿)))
286283, 285breqtrrd 4681 . . . . . . . . . . 11 (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿)))
287251, 42posdifd 10614 . . . . . . . . . . 11 (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿))))
288286, 287mpbird 247 . . . . . . . . . 10 (𝜑 → -(1 / 𝐿) < (1 / 𝐿))
289 ioon0 12201 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
290252, 43, 289syl2anc 693 . . . . . . . . . 10 (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
291288, 290mpbird 247 . . . . . . . . 9 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅)
292 r19.2zb 4061 . . . . . . . . 9 ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
293291, 292sylib 208 . . . . . . . 8 (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
294293ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
295281, 294mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
296295adantlrr 757 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
297269, 296pm2.61dan 832 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
298 elioo2 12216 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
299252, 43, 298syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
300299biimpa 501 . . . . . . . . 9 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))
301 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
302301, 46absltd 14168 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
30349adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ)
304 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿))
305303, 304ltned 10173 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
306233biimpd 219 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
307306impancom 456 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
308305, 307mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
309308ex 450 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
310302, 309sylbird 250 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
311310impr 649 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
312311expcom 451 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
3133123impb 1260 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
314313impcom 446 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
315300, 314syldan 487 . . . . . . . 8 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
316315ex 450 . . . . . . 7 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
317316ssrdv 3609 . . . . . 6 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
318 ssrexv 3667 . . . . . 6 ((-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
319317, 318syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
320319adantr 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
321297, 320mpd 15 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)
3223, 43, 250, 321eqsupd 8363 . 2 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = (1 / 𝐿))
3231, 322syl5eq 2668 1 (𝜑𝑅 = (1 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729   Or wor 5034  dom cdm 5114  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  0cn0 11292  cz 11377  cuz 11687  +crp 11832  (,)cioo 12175  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  binomcxplemradcnv  38551
  Copyright terms: Public domain W3C validator