Proof of Theorem radcnvrat
| Step | Hyp | Ref
| Expression |
| 1 | | radcnvrat.r |
. 2
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
| 2 | | xrltso 11974 |
. . . 4
⊢ < Or
ℝ* |
| 3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → < Or
ℝ*) |
| 4 | | radcnvrat.z |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | radcnvrat.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 6 | 5 | nn0zd 11480 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | 4 | reseq2i 5393 |
. . . . . . 7
⊢ (𝐷 ↾ 𝑍) = (𝐷 ↾ (ℤ≥‘𝑀)) |
| 8 | | radcnvrat.l |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⇝ 𝐿) |
| 9 | | radcnvrat.rat |
. . . . . . . . . 10
⊢ 𝐷 = (𝑘 ∈ ℕ0 ↦
(abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) |
| 10 | | nn0ex 11298 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 11 | 10 | mptex 6486 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) ∈ V |
| 12 | 9, 11 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐷 ∈ V |
| 13 | | climres 14306 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾
(ℤ≥‘𝑀)) ⇝ 𝐿 ↔ 𝐷 ⇝ 𝐿)) |
| 14 | 6, 12, 13 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → ((𝐷 ↾ (ℤ≥‘𝑀)) ⇝ 𝐿 ↔ 𝐷 ⇝ 𝐿)) |
| 15 | 8, 14 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ↾ (ℤ≥‘𝑀)) ⇝ 𝐿) |
| 16 | 7, 15 | syl5eqbr 4688 |
. . . . . 6
⊢ (𝜑 → (𝐷 ↾ 𝑍) ⇝ 𝐿) |
| 17 | 9 | reseq1i 5392 |
. . . . . . . . 9
⊢ (𝐷 ↾ 𝑍) = ((𝑘 ∈ ℕ0 ↦
(abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) ↾ 𝑍) |
| 18 | | eluznn0 11757 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
| 19 | 5, 18 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
| 20 | 19 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈
ℕ0)) |
| 21 | 20 | ssrdv 3609 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘𝑀) ⊆
ℕ0) |
| 22 | 4, 21 | syl5eqss 3649 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆
ℕ0) |
| 23 | 22 | resmptd 5452 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦
(abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) ↾ 𝑍) = (𝑘 ∈ 𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))))) |
| 24 | 17, 23 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ↾ 𝑍) = (𝑘 ∈ 𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))))) |
| 25 | | fvexd 6203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) ∈ V) |
| 26 | 24, 25 | fvmpt2d 6293 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐷 ↾ 𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) |
| 27 | 4 | peano2uzs 11742 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (𝑘 + 1) ∈ 𝑍) |
| 28 | 22 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈
ℕ0) |
| 29 | | radcnvrat.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 30 | 29 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) →
(𝐴‘(𝑘 + 1)) ∈
ℂ) |
| 31 | 28, 30 | syldan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
| 32 | 27, 31 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
| 33 | 22 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℕ0) |
| 34 | 29 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 35 | 33, 34 | syldan 487 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ∈ ℂ) |
| 36 | | radcnvrat.n0 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) |
| 37 | 32, 35, 36 | divcld 10801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) ∈ ℂ) |
| 38 | 37 | abscld 14175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) ∈ ℝ) |
| 39 | 26, 38 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐷 ↾ 𝑍)‘𝑘) ∈ ℝ) |
| 40 | 4, 6, 16, 39 | climrecl 14314 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 41 | | radcnvrat.ln0 |
. . . . 5
⊢ (𝜑 → 𝐿 ≠ 0) |
| 42 | 40, 41 | rereccld 10852 |
. . . 4
⊢ (𝜑 → (1 / 𝐿) ∈ ℝ) |
| 43 | 42 | rexrd 10089 |
. . 3
⊢ (𝜑 → (1 / 𝐿) ∈
ℝ*) |
| 44 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 45 | | elrabi 3359 |
. . . . 5
⊢ (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } → 𝑥 ∈
ℝ) |
| 46 | 42 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (1 / 𝐿) ∈
ℝ) |
| 47 | | recn 10026 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 48 | 47 | abscld 14175 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ →
(abs‘𝑥) ∈
ℝ) |
| 49 | 48 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝑥) ∈
ℝ) |
| 50 | 46, 49 | ltlend 10182 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿)))) |
| 51 | 50 | simplbda 654 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿)) |
| 52 | 50 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿)))) |
| 53 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿)) |
| 54 | 53 | biantrud 528 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿)))) |
| 55 | 46, 49 | lenltd 10183 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿))) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿))) |
| 57 | 52, 54, 56 | 3bitr2d 296 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿))) |
| 58 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈
ℂ) |
| 59 | 49 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝑥) ∈
ℂ) |
| 60 | 40 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 61 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐿 ∈ ℂ) |
| 62 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐿 ≠ 0) |
| 63 | 58, 59, 61, 62 | divmul3d 10835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿))) |
| 64 | | eqcom 2629 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 /
𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿)) |
| 65 | | eqcom 2629 |
. . . . . . . . . . . . . . . . 17
⊢ (1 =
((abs‘𝑥) ·
𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1) |
| 66 | 63, 64, 65 | 3bitr3g 302 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)) |
| 67 | 66 | necon3bid 2838 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1)) |
| 68 | 67 | biimpa 501 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1) |
| 69 | | 1red 10055 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈
ℝ) |
| 70 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑍 → ((𝐷 ↾ 𝑍)‘𝑘) = (𝐷‘𝑘)) |
| 71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐷 ↾ 𝑍)‘𝑘) = (𝐷‘𝑘)) |
| 72 | 71, 39 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐷‘𝑘) ∈ ℝ) |
| 73 | 37 | absge0d 14183 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) |
| 74 | 73, 26 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ ((𝐷 ↾ 𝑍)‘𝑘)) |
| 75 | 74, 71 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐷‘𝑘)) |
| 76 | 4, 6, 8, 72, 75 | climge0 14315 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 ≤ 𝐿) |
| 77 | 40, 76, 41 | ne0gt0d 10174 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 𝐿) |
| 78 | 40, 77 | elrpd 11869 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐿 ∈
ℝ+) |
| 79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐿 ∈
ℝ+) |
| 80 | 49, 69, 79 | ltmuldivd 11919 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿))) |
| 81 | 80 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿))) |
| 82 | | elun 3753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((ℝ ∩ {0})
∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖
{0}))) |
| 83 | | inundif 4046 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℝ
∩ {0}) ∪ (ℝ ∖ {0})) = ℝ |
| 84 | 83 | eleq2i 2693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((ℝ ∩ {0})
∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ) |
| 85 | 82, 84 | bitr3i 266 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (ℝ ∩ {0}) ∨
𝑥 ∈ (ℝ ∖
{0})) ↔ 𝑥 ∈
ℝ) |
| 86 | | elin 3796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (ℝ ∩ {0})
↔ (𝑥 ∈ ℝ
∧ 𝑥 ∈
{0})) |
| 87 | 86 | simprbi 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (ℝ ∩ {0})
→ 𝑥 ∈
{0}) |
| 88 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {0} → 𝑥 = 0) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (ℝ ∩ {0})
→ 𝑥 =
0) |
| 90 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 0 → (abs‘𝑥) =
(abs‘0)) |
| 91 | | abs0 14025 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(abs‘0) = 0 |
| 92 | 90, 91 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 93 | 92 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿)) |
| 94 | 60 | mul02d 10234 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (0 · 𝐿) = 0) |
| 95 | 93, 94 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0) |
| 96 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 <
1 |
| 97 | 95, 96 | syl6eqbr 4692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1) |
| 98 | | radcnvrat.g |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 99 | 98, 29 | radcnv0 24170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝
}) |
| 100 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ↔ 0 ∈
{𝑟 ∈ ℝ ∣
seq0( + , (𝐺‘𝑟)) ∈ dom ⇝
})) |
| 101 | 99, 100 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 102 | 101 | imp 445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 103 | 97, 102 | 2thd 255 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 104 | 89, 103 | sylan2 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∩ {0})) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 105 | 104 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 106 | | ax-resscn 9993 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℝ
⊆ ℂ |
| 107 | | ssdif 3745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℝ
⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖
{0})) |
| 108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℝ
∖ {0}) ⊆ (ℂ ∖ {0}) |
| 109 | 108 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (ℝ ∖ {0})
→ 𝑥 ∈ (ℂ
∖ {0})) |
| 110 | | nn0uz 11722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
ℕ0 = (ℤ≥‘0) |
| 111 | 5 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) → 𝑀 ∈
ℕ0) |
| 112 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) → (𝐺‘𝑥) ∈ V) |
| 113 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ∈
ℂ) |
| 114 | 98 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))))) |
| 115 | 10 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) ∈ V |
| 116 | 115 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛))) ∈ V) |
| 117 | 114, 116 | fvmpt2d 6293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐺‘𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 118 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 119 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) |
| 120 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → (𝑥↑𝑛) = (𝑥↑𝑘)) |
| 121 | 119, 120 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑘 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 122 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 123 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 124 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ V) |
| 125 | 118, 122,
123, 124 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑥)‘𝑘) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 126 | 34 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 127 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈
ℂ) |
| 128 | 127, 123 | expcld 13008 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℂ) |
| 129 | 126, 128 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 130 | 125, 129 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺‘𝑥)‘𝑘) ∈ ℂ) |
| 131 | 113, 130 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑥)‘𝑘) ∈ ℂ) |
| 132 | 131 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0)
→ ((𝐺‘𝑥)‘𝑘) ∈ ℂ) |
| 133 | 33 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℕ0) |
| 134 | 133, 125 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘𝑘) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 135 | 113, 134 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘𝑘) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 136 | 35 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ∈ ℂ) |
| 137 | 113 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈
ℂ) |
| 138 | 137 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 𝑥 ∈ ℂ) |
| 139 | 33 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℕ0) |
| 140 | 138, 139 | expcld 13008 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑𝑘) ∈ ℂ) |
| 141 | 36 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) |
| 142 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ (ℂ ∖ {0})
→ 𝑥 ≠
0) |
| 143 | 142 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 𝑥 ≠ 0) |
| 144 | 139 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℤ) |
| 145 | 138, 143,
144 | expne0d 13014 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑𝑘) ≠ 0) |
| 146 | 136, 140,
141, 145 | mulne0d 10679 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ≠ 0) |
| 147 | 135, 146 | eqnetrd 2861 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘𝑘) ≠ 0) |
| 148 | 147 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘𝑘) ≠ 0) |
| 149 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) |
| 150 | 149 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑥)‘(𝑛 + 1)) = ((𝐺‘𝑥)‘(𝑘 + 1))) |
| 151 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑘 → ((𝐺‘𝑥)‘𝑛) = ((𝐺‘𝑥)‘𝑘)) |
| 152 | 150, 151 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑘 → (((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)) = (((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘))) |
| 153 | 152 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑘 → (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))) = (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)))) |
| 154 | 153 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) = (𝑘 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)))) |
| 155 | 4 | reseq2i 5393 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾
(ℤ≥‘𝑀)) |
| 156 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆
ℕ0) |
| 157 | 156 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))) |
| 158 | 155, 157 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾
(ℤ≥‘𝑀)) = (𝑛 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))) |
| 159 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈
ℤ) |
| 160 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝐷 ⇝ 𝐿) |
| 161 | 137 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ∈
ℝ) |
| 162 | 161 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(abs‘𝑥) ∈
ℂ) |
| 163 | 10 | mptex 6486 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ∈ V |
| 164 | 163 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ∈ V) |
| 165 | 72 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐷‘𝑘) ∈ ℂ) |
| 166 | 165 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝐷‘𝑘) ∈ ℂ) |
| 167 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))) |
| 168 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))) = (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)))) |
| 169 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘))) ∈ V) |
| 170 | 167, 168,
139, 169 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)))) |
| 171 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| 172 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1)) |
| 173 | 172 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴‘𝑛) = (𝐴‘(𝑘 + 1))) |
| 174 | 172 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥↑𝑛) = (𝑥↑(𝑘 + 1))) |
| 175 | 173, 174 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1)))) |
| 176 | | 1nn0 11308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ 1 ∈
ℕ0 |
| 177 | 176 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → 1 ∈
ℕ0) |
| 178 | 133, 177 | nn0addcld 11355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → (𝑘 + 1) ∈
ℕ0) |
| 179 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V) |
| 180 | 171, 175,
178, 179 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1)))) |
| 181 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) ∧ 𝑛 = 𝑘) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 182 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ V) |
| 183 | 171, 181,
133, 182 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → ((𝐺‘𝑥)‘𝑘) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 184 | 180, 183 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 185 | 113, 184 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 186 | 32 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ) |
| 187 | 113, 178 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑘 + 1) ∈
ℕ0) |
| 188 | 138, 187 | expcld 13008 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ) |
| 189 | 186, 136,
188, 140, 141, 145 | divmuldivd 10842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥↑𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 190 | 139 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℂ) |
| 191 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → 1 ∈ ℂ) |
| 192 | 190, 191 | pncan2d 10394 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝑘 + 1) − 𝑘) = 1) |
| 193 | 192 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1)) |
| 194 | 187 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑘 + 1) ∈ ℤ) |
| 195 | 138, 143,
144, 194 | expsubd 13019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥↑𝑘))) |
| 196 | 138 | exp1d 13003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝑥↑1) = 𝑥) |
| 197 | 193, 195,
196 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥↑𝑘)) = 𝑥) |
| 198 | 197 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥↑𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · 𝑥)) |
| 199 | 185, 189,
198 | 3eqtr2d 2662 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · 𝑥)) |
| 200 | 199 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (abs‘(((𝐺‘𝑥)‘(𝑘 + 1)) / ((𝐺‘𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · 𝑥))) |
| 201 | 37 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) ∈ ℂ) |
| 202 | 201, 138 | absmuld 14193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) · (abs‘𝑥))) |
| 203 | 170, 200,
202 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) · (abs‘𝑥))) |
| 204 | 71, 26 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐷‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) |
| 205 | 204 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (𝐷‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) |
| 206 | 205 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) = (𝐷‘𝑘)) |
| 207 | 206 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) · (abs‘𝑥)) = ((𝐷‘𝑘) · (abs‘𝑥))) |
| 208 | 162 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → (abs‘𝑥) ∈ ℂ) |
| 209 | 166, 208 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝐷‘𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷‘𝑘))) |
| 210 | 203, 207,
209 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷‘𝑘))) |
| 211 | 4, 159, 160, 162, 164, 166, 210 | climmulc2 14367 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)) |
| 212 | | climres 14306 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾
(ℤ≥‘𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))) |
| 213 | 159, 163,
212 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) →
(((𝑛 ∈
ℕ0 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾
(ℤ≥‘𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦
(abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))) |
| 214 | 211, 213 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0
↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ↾
(ℤ≥‘𝑀)) ⇝ ((abs‘𝑥) · 𝐿)) |
| 215 | 158, 214 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)) |
| 216 | 215 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) → (𝑛 ∈ 𝑍 ↦ (abs‘(((𝐺‘𝑥)‘(𝑛 + 1)) / ((𝐺‘𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)) |
| 217 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) →
((abs‘𝑥) ·
𝐿) ≠ 1) |
| 218 | 110, 4, 111, 112, 132, 148, 154, 216, 217 | cvgdvgrat 38512 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ (ℂ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ seq0( + ,
(𝐺‘𝑥)) ∈ dom ⇝ )) |
| 219 | 109, 218 | sylanl2 683 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ seq0( + ,
(𝐺‘𝑥)) ∈ dom ⇝ )) |
| 220 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (ℝ ∖ {0})
→ 𝑥 ∈
ℝ) |
| 221 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑟 = 𝑥 → (𝐺‘𝑟) = (𝐺‘𝑥)) |
| 222 | 221 | seqeq3d 12809 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑟 = 𝑥 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘𝑥))) |
| 223 | 222 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑟 = 𝑥 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘𝑥)) ∈ dom ⇝ )) |
| 224 | 223 | elrab3 3364 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ↔ seq0( + ,
(𝐺‘𝑥)) ∈ dom ⇝ )) |
| 225 | 220, 224 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (ℝ ∖ {0})
→ (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝ } ↔
seq0( + , (𝐺‘𝑥)) ∈ dom ⇝
)) |
| 226 | 225 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ↔ seq0( + ,
(𝐺‘𝑥)) ∈ dom ⇝ )) |
| 227 | 219, 226 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (ℝ ∖ {0})) ∧
((abs‘𝑥) ·
𝐿) ≠ 1) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 228 | 227 | an32s 846 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) →
(((abs‘𝑥) ·
𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 229 | 105, 228 | jaodan 826 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
→ (((abs‘𝑥)
· 𝐿) < 1 ↔
𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝
})) |
| 230 | 85, 229 | sylan2br 493 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 231 | 230 | an32s 846 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 232 | 81, 231 | bitr3d 270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 233 | 68, 232 | syldan 487 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 234 | 233 | notbid 308 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 235 | 57, 234 | bitrd 268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 236 | 235 | biimpd 219 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 237 | 236 | impancom 456 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 238 | 51, 237 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 239 | 238 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 240 | 239 | con2d 129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } → ¬ (1 /
𝐿) < (abs‘𝑥))) |
| 241 | 46 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ) |
| 242 | | simplr 792 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ) |
| 243 | 49 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ) |
| 244 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥) |
| 245 | 242 | leabsd 14153 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥)) |
| 246 | 241, 242,
243, 244, 245 | ltletrd 10197 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥)) |
| 247 | 246 | ex 450 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥))) |
| 248 | 240, 247 | nsyld 154 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } → ¬ (1 /
𝐿) < 𝑥)) |
| 249 | 45, 248 | sylan2 491 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } → ¬ (1 /
𝐿) < 𝑥)) |
| 250 | 44, 249 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → ¬ (1 /
𝐿) < 𝑥) |
| 251 | 42 | renegcld 10457 |
. . . . . . . . 9
⊢ (𝜑 → -(1 / 𝐿) ∈ ℝ) |
| 252 | 251 | rexrd 10089 |
. . . . . . . 8
⊢ (𝜑 → -(1 / 𝐿) ∈
ℝ*) |
| 253 | | iooss1 12210 |
. . . . . . . 8
⊢ ((-(1 /
𝐿) ∈
ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿))) |
| 254 | 252, 253 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿))) |
| 255 | 254 | adantlr 751 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿))) |
| 256 | | eliooord 12233 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘 ∧ 𝑘 < (1 / 𝐿))) |
| 257 | 256 | simpld 475 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘) |
| 258 | 257 | rgen 2922 |
. . . . . . . . 9
⊢
∀𝑘 ∈
(𝑥(,)(1 / 𝐿))𝑥 < 𝑘 |
| 259 | | ioon0 12201 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ (1 / 𝐿) ∈
ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿))) |
| 260 | 43, 259 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿))) |
| 261 | 260 | ancoms 469 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿))) |
| 262 | 261 | biimpar 502 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅) |
| 263 | | r19.2zb 4061 |
. . . . . . . . . 10
⊢ ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 264 | 262, 263 | sylib 208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 265 | 258, 264 | mpi 20 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘) |
| 266 | 265 | anasss 679 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘) |
| 267 | 266 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘) |
| 268 | | ssrexv 3667 |
. . . . . 6
⊢ ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 269 | 255, 267,
268 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘) |
| 270 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
| 271 | | xrltnle 10105 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ -(1 / 𝐿) ∈
ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥)) |
| 272 | | xrltle 11982 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ -(1 / 𝐿) ∈
ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿))) |
| 273 | 271, 272 | sylbird 250 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ*
∧ -(1 / 𝐿) ∈
ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥 → 𝑥 ≤ -(1 / 𝐿))) |
| 274 | 252, 273 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ 𝜑) → (¬ -(1 /
𝐿) ≤ 𝑥 → 𝑥 ≤ -(1 / 𝐿))) |
| 275 | 274 | ancoms 469 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (¬
-(1 / 𝐿) ≤ 𝑥 → 𝑥 ≤ -(1 / 𝐿))) |
| 276 | 275 | imp 445 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿)) |
| 277 | | iooss1 12210 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ*
∧ 𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿))) |
| 278 | 270, 276,
277 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿))) |
| 279 | 278 | sselda 3603 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿))) |
| 280 | 279, 257 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘) |
| 281 | 280 | ralrimiva 2966 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘) |
| 282 | 40, 77 | recgt0d 10958 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (1 / 𝐿)) |
| 283 | 42, 42, 282, 282 | addgt0d 10602 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿))) |
| 284 | 42 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 / 𝐿) ∈ ℂ) |
| 285 | 284, 284 | subnegd 10399 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿))) |
| 286 | 283, 285 | breqtrrd 4681 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿))) |
| 287 | 251, 42 | posdifd 10614 |
. . . . . . . . . . 11
⊢ (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿)))) |
| 288 | 286, 287 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → -(1 / 𝐿) < (1 / 𝐿)) |
| 289 | | ioon0 12201 |
. . . . . . . . . . 11
⊢ ((-(1 /
𝐿) ∈
ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 /
𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿))) |
| 290 | 252, 43, 289 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿))) |
| 291 | 288, 290 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅) |
| 292 | | r19.2zb 4061 |
. . . . . . . . 9
⊢ ((-(1 /
𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 293 | 291, 292 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 294 | 293 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)) |
| 295 | 281, 294 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ*) ∧ ¬ -(1
/ 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘) |
| 296 | 295 | adantlrr 757 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘) |
| 297 | 269, 296 | pm2.61dan 832 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘) |
| 298 | | elioo2 12216 |
. . . . . . . . . . 11
⊢ ((-(1 /
𝐿) ∈
ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)))) |
| 299 | 252, 43, 298 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)))) |
| 300 | 299 | biimpa 501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿))) |
| 301 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 302 | 301, 46 | absltd 14168 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)))) |
| 303 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ) |
| 304 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿)) |
| 305 | 303, 304 | ltned 10173 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿)) |
| 306 | 233 | biimpd 219 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 307 | 306 | impancom 456 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 308 | 305, 307 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 309 | 308 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 310 | 302, 309 | sylbird 250 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 311 | 310 | impr 649 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 312 | 311 | expcom 451 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ (-(1 /
𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿))) → (𝜑 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 313 | 312 | 3impb 1260 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ -(1 /
𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿)) → (𝜑 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 314 | 313 | impcom 446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥 ∧ 𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 315 | 300, 314 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 316 | 315 | ex 450 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ })) |
| 317 | 316 | ssrdv 3609 |
. . . . . 6
⊢ (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 318 | | ssrexv 3667 |
. . . . . 6
⊢ ((-(1 /
𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)) |
| 319 | 317, 318 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)) |
| 320 | 319 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)) |
| 321 | 297, 320 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑥 < 𝑘) |
| 322 | 3, 43, 250, 321 | eqsupd 8363 |
. 2
⊢ (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = (1 / 𝐿)) |
| 323 | 1, 322 | syl5eq 2668 |
1
⊢ (𝜑 → 𝑅 = (1 / 𝐿)) |