| Step | Hyp | Ref
| Expression |
| 1 | | mblfinlem4 33449 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
= sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) |
| 2 | | elpwi 4168 |
. . . . 5
⊢ (𝑤 ∈ 𝒫 ℝ →
𝑤 ⊆
ℝ) |
| 3 | | elmapi 7879 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 4 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∩ 𝐴) ⊆ 𝑤 |
| 5 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∩ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∩ 𝐴)) ∈
ℝ) |
| 6 | 4, 5 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
| 7 | | difss 3737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∖ 𝐴) ⊆ 𝑤 |
| 8 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∖ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∖
𝐴)) ∈
ℝ) |
| 9 | 7, 8 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
| 10 | 6, 9 | readdcld 10069 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
| 11 | 10 | rexrd 10089 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 12 | 11 | ad3antlr 767 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 13 | | rncoss 5386 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran ((,)
∘ 𝑓) ⊆ ran
(,) |
| 14 | 13 | unissi 4461 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
(,) |
| 15 | | unirnioo 12273 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ =
∪ ran (,) |
| 16 | 14, 15 | sseqtr4i 3638 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ |
| 17 | | ovolcl 23246 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
| 18 | 16, 17 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
| 19 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
| 20 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
| 21 | 19, 20 | ovolsf 23241 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
| 22 | | frn 6053 |
. . . . . . . . . . . . . . . . . . 19
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞)) |
| 23 | | icossxr 12258 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0[,)+∞) ⊆ ℝ* |
| 24 | 22, 23 | syl6ss 3615 |
. . . . . . . . . . . . . . . . . 18
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
| 25 | | supxrcl 12145 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
| 26 | 21, 24, 25 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
| 27 | 26 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
| 28 | | pnfge 11964 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((vol*‘(𝑤
∩ 𝐴)) +
(vol*‘(𝑤 ∖
𝐴))) ∈
ℝ* → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 29 | 11, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 30 | 29 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 31 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) |
| 32 | 30, 31 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 33 | 32 | adantlll 754 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 34 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ* |
| 35 | | nltpnft 11995 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
→ ((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) |
| 37 | 36 | necon2abii 2844 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ ↔
(vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) |
| 38 | | ovolge0 23249 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 39 | 16, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) |
| 40 | | 0re 10040 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
| 41 | | xrre3 12002 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ 0 ∈ ℝ) ∧ (0 ≤ (vol*‘∪
ran ((,) ∘ 𝑓)) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 42 | 34, 40, 41 | mpanl12 718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 43 | 39, 42 | mpan 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 44 | 37, 43 | sylbir 225 |
. . . . . . . . . . . . . . . . . . 19
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 45 | 10 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
| 46 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 = (vol‘𝑎)) |
| 47 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑎 → (𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol)) |
| 48 | | uniretop 22566 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 49 | 48 | cldss 20833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ) |
| 50 | | dfss4 3858 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑏)) = 𝑏) |
| 51 | 49, 50 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) = 𝑏) |
| 52 | | rembl 23308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ℝ
∈ dom vol |
| 53 | 48 | cldopn 20835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran
(,))) |
| 54 | | opnmbl 23370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℝ
∖ 𝑏) ∈
(topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 56 | | difmbl 23311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖
(ℝ ∖ 𝑏)) ∈
dom vol) |
| 57 | 52, 55, 56 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) ∈ dom
vol) |
| 58 | 51, 57 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol) |
| 59 | 47, 58 | vtoclga 3272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → 𝑎 ∈ dom vol) |
| 60 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈ dom vol →
(vol‘𝑎) =
(vol*‘𝑎)) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑎) = (vol*‘𝑎)) |
| 62 | 46, 61 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑧 = (vol*‘𝑎)) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 = (vol*‘𝑎)) |
| 64 | | inss1 3833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 65 | | sstr 3611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑓)) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 66 | 64, 65 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 67 | 66 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 68 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
| 69 | 16, 68 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
| 70 | 69 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑎) ∈ ℝ) |
| 71 | 67, 70 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → (vol*‘𝑎) ∈ ℝ) |
| 72 | 63, 71 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 ∈ ℝ) |
| 73 | 72 | rexlimdvaa 3032 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 ∈ ℝ)) |
| 74 | 73 | abssdv 3676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ) |
| 75 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑎) ↔ 𝑦 = (vol‘𝑎))) |
| 76 | 75 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
| 77 | 76 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
| 78 | 77 | ralab 3367 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 79 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 = (vol‘𝑎)) |
| 80 | 79, 61 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 = (vol*‘𝑎)) |
| 81 | | ovolss 23253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑎) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 82 | 66, 16, 81 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 83 | 82 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 84 | 80, 83 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 85 | 84 | rexlimiva 3028 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 86 | 78, 85 | mpgbir 1726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
| 87 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = (vol*‘∪ ran ((,) ∘ 𝑓)) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 88 | 87 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (vol*‘∪ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 89 | 88 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
| 90 | 86, 89 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
| 91 | | retop 22565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(topGen‘ran (,)) ∈ Top |
| 92 | | 0cld 20842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((topGen‘ran (,)) ∈ Top → ∅ ∈
(Clsd‘(topGen‘ran (,)))) |
| 93 | 91, 92 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ (Clsd‘(topGen‘ran (,))) |
| 94 | | 0ss 3972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) |
| 95 | | 0mbl 23307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ∅
∈ dom vol |
| 96 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
| 97 | 95, 96 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol‘∅) = (vol*‘∅) |
| 98 | | ovol0 23261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol*‘∅) = 0 |
| 99 | 97, 98 | eqtr2i 2645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 =
(vol‘∅) |
| 100 | 94, 99 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)) |
| 101 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 102 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = ∅ →
(vol‘𝑎) =
(vol‘∅)) |
| 103 | 102 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (0 =
(vol‘𝑎) ↔ 0 =
(vol‘∅))) |
| 104 | 101, 103 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = ∅ → ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)))) |
| 105 | 104 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
| 106 | 93, 100, 105 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) |
| 107 | | c0ex 10034 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
V |
| 108 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑎) ↔ 0 = (vol‘𝑎))) |
| 109 | 108 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
| 110 | 109 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
| 111 | 107, 110 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
| 112 | 106, 111 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
| 113 | 112 | ne0ii 3923 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ |
| 114 | | suprcl 10983 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 115 | 113, 114 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 116 | 74, 90, 115 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 117 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 = (vol‘𝑐)) |
| 118 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑐 → (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol)) |
| 119 | 118, 58 | vtoclga 3272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ∈ dom vol) |
| 120 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ dom vol →
(vol‘𝑐) =
(vol*‘𝑐)) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑐) = (vol*‘𝑐)) |
| 122 | 117, 121 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑧 = (vol*‘𝑐)) |
| 123 | 122 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 = (vol*‘𝑐)) |
| 124 | | difss2 3739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 125 | 124 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 126 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
| 127 | 16, 126 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
| 128 | 127 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑐) ∈ ℝ) |
| 129 | 125, 128 | sylan2 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → (vol*‘𝑐) ∈ ℝ) |
| 130 | 123, 129 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 ∈ ℝ) |
| 131 | 130 | rexlimdvaa 3032 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 ∈ ℝ)) |
| 132 | 131 | abssdv 3676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ) |
| 133 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑐) ↔ 𝑦 = (vol‘𝑐))) |
| 134 | 133 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
| 135 | 134 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
| 136 | 135 | ralab 3367 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 137 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 = (vol‘𝑐)) |
| 138 | 137, 121 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 = (vol*‘𝑐)) |
| 139 | | ovolss 23253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑐) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 140 | 124, 16, 139 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 141 | 140 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 142 | 138, 141 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 143 | 142 | rexlimiva 3028 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 144 | 136, 143 | mpgbir 1726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
| 145 | 87 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = (vol*‘∪ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 146 | 145 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
| 147 | 144, 146 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
| 148 | | 0ss 3972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) |
| 149 | 148, 99 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)) |
| 150 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 151 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = ∅ →
(vol‘𝑐) =
(vol‘∅)) |
| 152 | 151 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (0 =
(vol‘𝑐) ↔ 0 =
(vol‘∅))) |
| 153 | 150, 152 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = ∅ → ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)))) |
| 154 | 153 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐))) |
| 155 | 93, 149, 154 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)) |
| 156 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑐) ↔ 0 = (vol‘𝑐))) |
| 157 | 156 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)))) |
| 158 | 157 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))) |
| 159 | 107, 158 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))) |
| 160 | 155, 159 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} |
| 161 | 160 | ne0ii 3923 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ |
| 162 | | suprcl 10983 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 163 | 161, 162 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 164 | 132, 147,
163 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 165 | 116, 164 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
| 166 | 165 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
| 167 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 168 | 6 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
| 169 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
| 170 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 171 | 64, 16, 170 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 172 | 171 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 173 | | difss 3737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 174 | | ovolsscl 23254 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 175 | 173, 16, 174 | mp3an12 1414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 176 | 175 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 177 | | ssrin 3838 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴)) |
| 178 | 64, 16 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ |
| 179 | | ovolss 23253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 180 | 177, 178,
179 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 181 | 180 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 182 | | ssdif 3745 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) |
| 183 | 173, 16 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ |
| 184 | | ovolss 23253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 185 | 182, 183,
184 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 186 | 185 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 187 | 168, 169,
172, 176, 181, 186 | le2addd 10646 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 188 | | dfin4 3867 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) = (∪ ran ((,)
∘ 𝑓) ∖ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 189 | 188 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
| 190 | 189 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 191 | 187, 190 | syl6breq 4694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 192 | 191 | adantlll 754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 193 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
(vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |
| 194 | 188 | sseq2i 3630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ 𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 195 | 194 | anbi1i 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
| 196 | 195 | rexbii 3041 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
| 197 | 196 | abbii 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))} |
| 198 | 197 | supeq1i 8353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 199 | 16 | jctl 564 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
| 200 | 199 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
| 201 | 175, 183 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
| 202 | 201 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
| 203 | | ltso 10118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ < Or
ℝ |
| 204 | 203 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → < Or
ℝ) |
| 205 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 206 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑥 ∈ V |
| 207 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑥 → (𝑧 = (vol‘𝑐) ↔ 𝑥 = (vol‘𝑐))) |
| 208 | 207 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑥 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
| 209 | 208 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑥 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
| 210 | 206, 209 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) |
| 211 | 16, 139 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 212 | 211 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 213 | 48 | cldss 20833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ⊆ ℝ) |
| 214 | | ovolcl 23246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ⊆ ℝ →
(vol*‘𝑐) ∈
ℝ*) |
| 215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) ∈
ℝ*) |
| 216 | | xrlenlt 10103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((vol*‘𝑐)
∈ ℝ* ∧ (vol*‘∪ ran
((,) ∘ 𝑓)) ∈
ℝ*) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 217 | 215, 34, 216 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 218 | 217 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 219 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol‘𝑐) → 𝑥 = (vol‘𝑐)) |
| 220 | 219, 121 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → 𝑥 = (vol*‘𝑐)) |
| 221 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol*‘𝑐) → ((vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 222 | 221 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑥 = (vol*‘𝑐) → (¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 223 | 220, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 224 | 223 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 225 | 218, 224 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥)) |
| 226 | 212, 225 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 227 | 226 | rexlimiva 3028 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 228 | 210, 227 | sylbi 207 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 229 | 228 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 230 | | retopbas 22564 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ran (,)
∈ TopBases |
| 231 | | bastg 20770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
| 232 | 230, 231 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ran (,)
⊆ (topGen‘ran (,)) |
| 233 | 13, 232 | sstri 3612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ran ((,)
∘ 𝑓) ⊆
(topGen‘ran (,)) |
| 234 | | uniopn 20702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,))) |
| 235 | 91, 233, 234 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,)) |
| 236 | | mblfinlem2 33447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
| 237 | 235, 236 | mp3an1 1411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
| 238 | 121 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) = (vol‘𝑐)) |
| 239 | 238 | anim1i 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 < (vol*‘𝑐)) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) |
| 240 | 239 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (𝑥 < (vol*‘𝑐) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))) |
| 241 | 240 | anim2d 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘𝑐) =
(vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))))) |
| 242 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(vol*‘𝑐)
∈ V |
| 243 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = (vol*‘𝑐) → (𝑦 = (vol‘𝑐) ↔ (vol*‘𝑐) = (vol‘𝑐))) |
| 244 | 243 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)))) |
| 245 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → (𝑥 < 𝑦 ↔ 𝑥 < (vol*‘𝑐))) |
| 246 | 244, 245 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = (vol*‘𝑐) → (((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)))) |
| 247 | 242, 246 | spcev 3300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 248 | 247 | anasss 679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 249 | 241, 248 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))) |
| 250 | 249 | reximia 3009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 251 | 237, 250 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))∃𝑦((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 252 | | r19.41v 3089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 253 | 252 | exbii 1774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 254 | | rexcom4 3225 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 255 | 133 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
| 256 | 255 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
| 257 | 256 | rexab 3369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦 ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 258 | 253, 254,
257 | 3bitr4i 292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 259 | 251, 258 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 260 | 259 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓)))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 261 | 204, 205,
229, 260 | eqsupd 8363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 262 | 261 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 263 | 262 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 264 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ↔
𝑎 ⊆ ∪ ran ((,) ∘ 𝑓))) |
| 265 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑎 → (vol‘𝑐) = (vol‘𝑎)) |
| 266 | 265 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑧 = (vol‘𝑐) ↔ 𝑧 = (vol‘𝑎))) |
| 267 | 264, 266 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎)))) |
| 268 | 267 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))) |
| 269 | 268 | abbii 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))} |
| 270 | 269 | supeq1i 8353 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 271 | 263, 270 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
| 272 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ↔ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 273 | 272, 266 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎)))) |
| 274 | 273 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))) |
| 275 | 274 | abbii 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
| 276 | 275 | supeq1i 8353 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 277 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 278 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏))) |
| 279 | 278 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑧 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
| 280 | 279 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
| 281 | | sseq1 3626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑏 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
| 282 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑐 → (vol‘𝑏) = (vol‘𝑐)) |
| 283 | 282 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑧 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑐))) |
| 284 | 281, 283 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 = 𝑐 → ((𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
| 285 | 284 | cbvrexv 3172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))) |
| 286 | 280, 285 | syl6bb 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
| 287 | 286 | cbvabv 2747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} = {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))} |
| 288 | 287 | supeq1i 8353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) |
| 289 | 288 | eqeq2i 2634 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 290 | 289 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 291 | 290 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 292 | | mblfinlem3 33448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∧ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 293 | 200, 277,
263, 291, 292 | syl112anc 1330 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 294 | 276, 293 | syl5reqr 2671 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
| 295 | | mblfinlem3 33448 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 296 | 200, 202,
271, 294, 295 | syl112anc 1330 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 297 | 198, 296 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 298 | 297, 293 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 299 | 193, 298 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 300 | 192, 299 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) |
| 301 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
| 302 | 112, 301 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
| 303 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
| 304 | 160, 303 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
| 305 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} = {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} |
| 306 | 74, 302, 90, 132, 304, 147, 305 | supadd 10991 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < )) |
| 307 | | reeanv 3107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 308 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑢 ∈ V |
| 309 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑢 → (𝑧 = (vol‘𝑎) ↔ 𝑢 = (vol‘𝑎))) |
| 310 | 309 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑢 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
| 311 | 310 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑢 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
| 312 | 308, 311 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))) |
| 313 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑣 ∈ V |
| 314 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑣 → (𝑧 = (vol‘𝑐) ↔ 𝑣 = (vol‘𝑐))) |
| 315 | 314 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑣 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 316 | 315 | rexbidv 3052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑣 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 317 | 313, 316 | elab 3350 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) |
| 318 | 312, 317 | anbi12i 733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 319 | 307, 318 | bitr4i 267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) |
| 320 | | an4 865 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ↔ ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 321 | | oveq12 6659 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐)) → (𝑢 + 𝑣) = ((vol‘𝑎) + (vol‘𝑐))) |
| 322 | 59 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑎 ∈ dom
vol) |
| 323 | 322 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑎 ∈ dom
vol) |
| 324 | 119 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑐 ∈ dom
vol) |
| 325 | 324 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑐 ∈ dom
vol) |
| 326 | | ss2in 3840 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ((∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 327 | 188 | ineq1i 3810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 328 | | incom 3805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = ((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
| 329 | | disjdif 4040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ∅ |
| 330 | 327, 328,
329 | 3eqtri 2648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) =
∅ |
| 331 | 326, 330 | syl6sseq 3651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ∅) |
| 332 | | ss0 3974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∩ 𝑐) ⊆ ∅ → (𝑎 ∩ 𝑐) = ∅) |
| 333 | 331, 332 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) = ∅) |
| 334 | 333 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → (𝑎 ∩ 𝑐) = ∅) |
| 335 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑎) =
(vol*‘𝑎)) |
| 336 | 335 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) =
(vol*‘𝑎)) |
| 337 | 66, 16 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
| 338 | 68 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
| 339 | 337, 338 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
| 340 | 339 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) → (vol*‘𝑎) ∈ ℝ) |
| 341 | 340 | ad2ant2r 783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑎) ∈
ℝ) |
| 342 | 336, 341 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) ∈
ℝ) |
| 343 | 121 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑐) =
(vol*‘𝑐)) |
| 344 | 343 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) =
(vol*‘𝑐)) |
| 345 | 124, 16 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
| 346 | 126 | 3expa 1265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
| 347 | 345, 346 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
| 348 | 347 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘𝑐) ∈ ℝ) |
| 349 | 348 | ad2ant2rl 785 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑐) ∈
ℝ) |
| 350 | 344, 349 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) ∈
ℝ) |
| 351 | | volun 23313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (𝑎 ∩ 𝑐) = ∅) ∧ ((vol‘𝑎) ∈ ℝ ∧
(vol‘𝑐) ∈
ℝ)) → (vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
| 352 | 323, 325,
334, 342, 350, 351 | syl32anc 1334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
| 353 | | unmbl 23305 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol) → (𝑎 ∪ 𝑐) ∈ dom vol) |
| 354 | 59, 119, 353 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (𝑎 ∪ 𝑐) ∈ dom
vol) |
| 355 | | mblvol 23298 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∪ 𝑐) ∈ dom vol → (vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 356 | 354, 355 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘(𝑎 ∪
𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 357 | 356 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 358 | 352, 357 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
((vol‘𝑎) +
(vol‘𝑐)) =
(vol*‘(𝑎 ∪ 𝑐))) |
| 359 | 321, 358 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) |
| 360 | | eqtr 2641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 = (𝑢 + 𝑣) ∧ (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 361 | 360 | ancoms 469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐)) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 362 | 359, 361 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 363 | 66, 124 | anim12i 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓))) |
| 364 | | unss 3787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) ↔
(𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 365 | 363, 364 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 366 | | ovolss 23253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 367 | 365, 16, 366 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) →
(vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 368 | 367 | ad3antlr 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 369 | 362, 368 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 370 | 369 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 371 | 370 | expl 648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 372 | 320, 371 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 373 | 372 | rexlimdvva 3038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 374 | 319, 373 | syl5bir 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 375 | 374 | rexlimdvv 3037 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 376 | 375 | alrimiv 1855 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 377 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑦 → (𝑡 = (𝑢 + 𝑣) ↔ 𝑦 = (𝑢 + 𝑣))) |
| 378 | 377 | 2rexbidv 3057 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑦 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣))) |
| 379 | 378 | ralab 3367 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑦 ∈
{𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 380 | 376, 379 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 381 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 = (𝑢 + 𝑣)) |
| 382 | 74 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) → 𝑢 ∈ ℝ) |
| 383 | 132 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → 𝑣 ∈ ℝ) |
| 384 | | readdcl 10019 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ) |
| 385 | 382, 383,
384 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
| 386 | 385 | anandis 873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
| 387 | 386 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → (𝑢 + 𝑣) ∈ ℝ) |
| 388 | 381, 387 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 ∈ ℝ) |
| 389 | 388 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
| 390 | 389 | rexlimdvva 3038 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
| 391 | 390 | abssdv 3676 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ) |
| 392 | | 00id 10211 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (0 + 0) =
0 |
| 393 | 392 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 = (0 +
0) |
| 394 | | rspceov 6692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0
∈ {𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ∧ 0 = (0 + 0)) → ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)) |
| 395 | 112, 160,
393, 394 | mp3an 1424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) |
| 396 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 0 → (𝑡 = (𝑢 + 𝑣) ↔ 0 = (𝑢 + 𝑣))) |
| 397 | 396 | 2rexbidv 3057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 0 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣))) |
| 398 | 107, 397 | spcev 3300 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) → ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
| 399 | 395, 398 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) |
| 400 | | abn0 3954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ↔ ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
| 401 | 399, 400 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ |
| 402 | 401 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅) |
| 403 | 87 | ralbidv 2986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 = (vol*‘∪ ran ((,) ∘ 𝑓)) → (∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 404 | 403 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
| 405 | 380, 404 | mpdan 702 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
| 406 | 391, 402,
405 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥)) |
| 407 | | suprleub 10989 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 408 | 406, 407 | mpancom 703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑡 ∣
∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 409 | 380, 408 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 410 | 306, 409 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 411 | 410 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 412 | 45, 166, 167, 300, 411 | letrd 10194 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 413 | 44, 412 | sylan2 491 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 414 | 33, 413 | pm2.61dane 2881 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 415 | 414 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 416 | | ssid 3624 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 417 | 20 | ovollb 23247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑓) ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 418 | 416, 417 | mpan2 707 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑓)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
| 419 | 418 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 420 | 12, 18, 27, 415, 419 | xrletrd 11993 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 421 | 420 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 422 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) |
| 423 | 421, 422 | breqtrrd 4681 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
| 424 | 423 | expl 648 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → ((𝑤
⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 425 | 3, 424 | sylan2 491 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
→ ((𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 426 | 425 | rexlimdva 3031 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚
ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 427 | 426 | ralrimivw 2967 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 428 | | eqeq1 2626 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → (𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ↔ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))) |
| 429 | 428 | anbi2d 740 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑢 → ((𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )))) |
| 430 | 429 | rexbidv 3052 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑢 → (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )))) |
| 431 | 430 | ralrab 3368 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
{𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢 ↔ ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 432 | 427, 431 | sylibr 224 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ {𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
| 433 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* |
| 434 | 11 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 435 | | infxrgelb 12165 |
. . . . . . . . 9
⊢ (({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* ∧
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ*) →
(((vol*‘(𝑤 ∩
𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 436 | 433, 434,
435 | sylancr 695 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 437 | 432, 436 | mpbird 247 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
| 438 | | eqid 2622 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} = {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} |
| 439 | 438 | ovolval 23242 |
. . . . . . . 8
⊢ (𝑤 ⊆ ℝ →
(vol*‘𝑤) = inf({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
| 440 | 439 | ad2antrl 764 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
| 441 | 437, 440 | breqtrrd 4681 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) |
| 442 | 441 | expr 643 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ⊆ ℝ) →
((vol*‘𝑤) ∈
ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 443 | 2, 442 | sylan2 491 |
. . . 4
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ∈ 𝒫 ℝ)
→ ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 444 | 443 | ralrimiva 2966 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → ∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 445 | | ismbl2 23295 |
. . . . 5
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧
∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)))) |
| 446 | 445 | baibr 945 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
(∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
| 447 | 446 | ad2antrr 762 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → (∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
| 448 | 444, 447 | mpbid 222 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → 𝐴 ∈ dom
vol) |
| 449 | 1, 448 | impbida 877 |
1
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∈
dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |