Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemelr Structured version   Visualization version   GIF version

Theorem eulerpartlemelr 30419
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemelr (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemelr
StepHypRef Expression
1 inss1 3833 . . . 4 ((ℕ0𝑚 ℕ) ∩ 𝑅) ⊆ (ℕ0𝑚 ℕ)
21sseli 3599 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0𝑚 ℕ))
3 elmapi 7879 . . 3 (𝐴 ∈ (ℕ0𝑚 ℕ) → 𝐴:ℕ⟶ℕ0)
42, 3syl 17 . 2 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
5 inss2 3834 . . . 4 ((ℕ0𝑚 ℕ) ∩ 𝑅) ⊆ 𝑅
65sseli 3599 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴𝑅)
7 cnveq 5296 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
87imaeq1d 5465 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
98eleq1d 2686 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
10 eulerpartlems.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
119, 10elab2g 3353 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴𝑅 ↔ (𝐴 “ ℕ) ∈ Fin))
126, 11mpbid 222 . 2 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
134, 12jca 554 1 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  cin 3573  cmpt 4729  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955   · cmul 9941  cn 11020  0cn0 11292  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  eulerpartlemsv2  30420  eulerpartlemsf  30421  eulerpartlems  30422  eulerpartlemsv3  30423  eulerpartlemgc  30424
  Copyright terms: Public domain W3C validator