![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemelr | ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3833 | . . . 4 ⊢ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ⊆ (ℕ0 ↑𝑚 ℕ) | |
2 | 1 | sseli 3599 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0 ↑𝑚 ℕ)) |
3 | elmapi 7879 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) → 𝐴:ℕ⟶ℕ0) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
5 | inss2 3834 | . . . 4 ⊢ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ⊆ 𝑅 | |
6 | 5 | sseli 3599 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴 ∈ 𝑅) |
7 | cnveq 5296 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
8 | 7 | imaeq1d 5465 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
9 | 8 | eleq1d 2686 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
10 | eulerpartlems.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
11 | 9, 10 | elab2g 3353 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
12 | 6, 11 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈ Fin) |
13 | 4, 12 | jca 554 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∩ cin 3573 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 · cmul 9941 ℕcn 11020 ℕ0cn0 11292 Σcsu 14416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
This theorem is referenced by: eulerpartlemsv2 30420 eulerpartlemsf 30421 eulerpartlems 30422 eulerpartlemsv3 30423 eulerpartlemgc 30424 |
Copyright terms: Public domain | W3C validator |