Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgc Structured version   Visualization version   GIF version

Theorem eulerpartlemgc 30424
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 9-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemgc ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝑅(𝑛)   𝑆(𝑓,𝑛)

Proof of Theorem eulerpartlemgc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2re 11090 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 2 ∈ ℝ)
3 bitsss 15148 . . . . 5 (bits‘(𝐴𝑡)) ⊆ ℕ0
4 simprr 796 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ (bits‘(𝐴𝑡)))
53, 4sseldi 3601 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ ℕ0)
62, 5reexpcld 13025 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℝ)
7 simprl 794 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℕ)
87nnred 11035 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ)
96, 8remulcld 10070 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ∈ ℝ)
10 eulerpartlems.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
11 eulerpartlems.s . . . . . . . 8 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
1210, 11eulerpartlemelr 30419 . . . . . . 7 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1312simpld 475 . . . . . 6 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1413ffvelrnda 6359 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1514adantrr 753 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℕ0)
1615nn0red 11352 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
1716, 8remulcld 10070 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
1810, 11eulerpartlemsf 30421 . . . . 5 𝑆:((ℕ0𝑚 ℕ) ∩ 𝑅)⟶ℕ0
1918ffvelrni 6358 . . . 4 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
2019adantr 481 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℕ0)
2120nn0red 11352 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℝ)
2214nn0red 11352 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℝ)
2322adantrr 753 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
247nnrpd 11870 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ+)
2524rprege0d 11879 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡))
26 bitsfi 15159 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (bits‘(𝐴𝑡)) ∈ Fin)
2715, 26syl 17 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ∈ Fin)
281a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℝ)
293a1i 11 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ⊆ ℕ0)
3029sselda 3603 . . . . . 6 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 𝑖 ∈ ℕ0)
3128, 30reexpcld 13025 . . . . 5 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → (2↑𝑖) ∈ ℝ)
32 0le2 11111 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ 2)
3428, 30, 33expge0d 13026 . . . . 5 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ (2↑𝑖))
354snssd 4340 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → {𝑛} ⊆ (bits‘(𝐴𝑡)))
3627, 31, 34, 35fsumless 14528 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) ≤ Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖))
376recnd 10068 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℂ)
38 oveq2 6658 . . . . . 6 (𝑖 = 𝑛 → (2↑𝑖) = (2↑𝑛))
3938sumsn 14475 . . . . 5 ((𝑛 ∈ (bits‘(𝐴𝑡)) ∧ (2↑𝑛) ∈ ℂ) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
404, 37, 39syl2anc 693 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
41 bitsinv1 15164 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4215, 41syl 17 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4336, 40, 423brtr3d 4684 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ≤ (𝐴𝑡))
44 lemul1a 10877 . . 3 ((((2↑𝑛) ∈ ℝ ∧ (𝐴𝑡) ∈ ℝ ∧ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡)) ∧ (2↑𝑛) ≤ (𝐴𝑡)) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
456, 23, 25, 43, 44syl31anc 1329 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
46 fzfid 12772 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → (1...(𝑆𝐴)) ∈ Fin)
47 elfznn 12370 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑆𝐴)) → 𝑘 ∈ ℕ)
48 ffvelrn 6357 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℕ0)
4913, 47, 48syl2an 494 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
5049nn0red 11352 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℝ)
5147adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
5251nnred 11035 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℝ)
5350, 52remulcld 10070 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5453adantlr 751 . . . . . . 7 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5549nn0ge0d 11354 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ (𝐴𝑘))
56 0red 10041 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ∈ ℝ)
5751nngt0d 11064 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 < 𝑘)
5856, 52, 57ltled 10185 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ 𝑘)
5950, 52, 55, 58mulge0d 10604 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
6059adantlr 751 . . . . . . 7 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
61 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
62 id 22 . . . . . . . 8 (𝑘 = 𝑡𝑘 = 𝑡)
6361, 62oveq12d 6668 . . . . . . 7 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
64 simpr 477 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → 𝑡 ∈ (1...(𝑆𝐴)))
6546, 54, 60, 63, 64fsumge1 14529 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
6665adantlr 751 . . . . 5 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
67 eldif 3584 . . . . . . 7 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
68 nndiffz1 29548 . . . . . . . . . . . . . 14 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
6968eleq2d 2687 . . . . . . . . . . . . 13 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7019, 69syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7170pm5.32i 669 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7210, 11eulerpartlems 30422 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
7371, 72sylbi 207 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
7473oveq1d 6665 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
75 simpr 477 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
7675eldifad 3586 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
7776nncnd 11036 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℂ)
7877mul02d 10234 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑡) = 0)
7974, 78eqtrd 2656 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = 0)
80 fzfid 12772 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ∈ Fin)
8180, 53, 59fsumge0 14527 . . . . . . . . 9 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8281adantr 481 . . . . . . . 8 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8379, 82eqbrtrd 4675 . . . . . . 7 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8467, 83sylan2br 493 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8584anassrs 680 . . . . 5 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8666, 85pm2.61dan 832 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8710, 11eulerpartlemsv3 30423 . . . . 5 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8887adantr 481 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8986, 88breqtrrd 4681 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
9089adantrr 753 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
919, 17, 21, 45, 90letrd 10194 1 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  cdif 3571  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cn 11020  2c2 11070  0cn0 11292  cuz 11687  ...cfz 12326  cexp 12860  Σcsu 14416  bitscbits 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-dvds 14984  df-bits 15144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator