![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv3 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30444. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemsv3 | ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
3 | 1, 2 | eulerpartlemsv1 30418 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
4 | fzssuz 12382 | . . . . 5 ⊢ (1...(𝑆‘𝐴)) ⊆ (ℤ≥‘1) | |
5 | nnuz 11723 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | sseqtr4i 3638 | . . . 4 ⊢ (1...(𝑆‘𝐴)) ⊆ ℕ |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (1...(𝑆‘𝐴)) ⊆ ℕ) |
8 | 1, 2 | eulerpartlemelr 30419 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 8 | simpld 475 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝐴:ℕ⟶ℕ0) |
11 | 7 | sselda 3603 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℕ) |
12 | 10, 11 | ffvelrnd 6360 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℕ0) |
13 | 12 | nn0cnd 11353 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℂ) |
14 | 11 | nncnd 11036 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℂ) |
15 | 13, 14 | mulcld 10060 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
16 | 1, 2 | eulerpartlems 30422 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |
17 | 16 | ralrimiva 2966 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
18 | fveq2 6191 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑡 → (𝐴‘𝑘) = (𝐴‘𝑡)) | |
19 | 18 | eqeq1d 2624 | . . . . . . . . 9 ⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) = 0 ↔ (𝐴‘𝑡) = 0)) |
20 | 19 | cbvralv 3171 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
21 | 17, 20 | sylibr 224 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0) |
22 | 1, 2 | eulerpartlemsf 30421 | . . . . . . . . . 10 ⊢ 𝑆:((ℕ0 ↑𝑚 ℕ) ∩ 𝑅)⟶ℕ0 |
23 | 22 | ffvelrni 6358 | . . . . . . . . 9 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈ ℕ0) |
24 | nndiffz1 29548 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | |
25 | 23, 24 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) |
26 | 25 | raleqdv 3144 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0 ↔ ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0)) |
27 | 21, 26 | mpbird 247 | . . . . . 6 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0) |
28 | 27 | r19.21bi 2932 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑘) = 0) |
29 | 28 | oveq1d 6665 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
30 | simpr 477 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | |
31 | 30 | eldifad 3586 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℕ) |
32 | 31 | nncnd 11036 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℂ) |
33 | 32 | mul02d 10234 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (0 · 𝑘) = 0) |
34 | 29, 33 | eqtrd 2656 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = 0) |
35 | 5 | eqimssi 3659 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
36 | 35 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
37 | 7, 15, 34, 36 | sumss 14455 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
38 | 3, 37 | eqtr4d 2659 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 ℕcn 11020 ℕ0cn0 11292 ℤ≥cuz 11687 ...cfz 12326 Σcsu 14416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 |
This theorem is referenced by: eulerpartlemgc 30424 |
Copyright terms: Public domain | W3C validator |