Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlems Structured version   Visualization version   GIF version

Theorem eulerpartlems 30422
Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 6-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlems ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlems
Dummy variables 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . . . . 6 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsf 30421 . . . . 5 𝑆:((ℕ0𝑚 ℕ) ∩ 𝑅)⟶ℕ0
43ffvelrni 6358 . . . 4 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
5 nndiffz1 29548 . . . . 5 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
65eleq2d 2687 . . . 4 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
74, 6syl 17 . . 3 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
87pm5.32i 669 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
9 simpr 477 . . . . . 6 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
10 eldif 3584 . . . . . 6 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
119, 10sylib 208 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
1211simpld 475 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
131, 2eulerpartlemelr 30419 . . . . . 6 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1413simpld 475 . . . . 5 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1514ffvelrnda 6359 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1612, 15syldan 487 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) ∈ ℕ0)
17 simpl 473 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅))
184adantr 481 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) ∈ ℕ0)
1911simprd 479 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 𝑡 ∈ (1...(𝑆𝐴)))
20 simpl 473 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℕ)
21 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
2220, 21syl6eleq 2711 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ (ℤ‘1))
23 simpr 477 . . . . . . . . . 10 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℕ0)
2423nn0zd 11480 . . . . . . . . 9 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℤ)
25 elfz5 12334 . . . . . . . . 9 ((𝑡 ∈ (ℤ‘1) ∧ (𝑆𝐴) ∈ ℤ) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2622, 24, 25syl2anc 693 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑡 ∈ (1...(𝑆𝐴)) ↔ 𝑡 ≤ (𝑆𝐴)))
2726notbid 308 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
2823nn0red 11352 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (𝑆𝐴) ∈ ℝ)
2920nnred 11035 . . . . . . . 8 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → 𝑡 ∈ ℝ)
3028, 29ltnled 10184 . . . . . . 7 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → ((𝑆𝐴) < 𝑡 ↔ ¬ 𝑡 ≤ (𝑆𝐴)))
3127, 30bitr4d 271 . . . . . 6 ((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) → (¬ 𝑡 ∈ (1...(𝑆𝐴)) ↔ (𝑆𝐴) < 𝑡))
3231biimpa 501 . . . . 5 (((𝑡 ∈ ℕ ∧ (𝑆𝐴) ∈ ℕ0) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → (𝑆𝐴) < 𝑡)
3312, 18, 19, 32syl21anc 1325 . . . 4 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝑆𝐴) < 𝑡)
341, 2eulerpartlemsv1 30418 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
35 fveq2 6191 . . . . . . . . . . . 12 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
36 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑡𝑘 = 𝑡)
3735, 36oveq12d 6668 . . . . . . . . . . 11 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
3837cbvsumv 14426 . . . . . . . . . 10 Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡)
3934, 38syl6req 2673 . . . . . . . . 9 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴))
40 breq2 4657 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → ((𝑆𝐴) < 𝑡 ↔ (𝑆𝐴) < 𝑙))
41 fveq2 6191 . . . . . . . . . . . . . 14 (𝑡 = 𝑙 → (𝐴𝑡) = (𝐴𝑙))
4241breq2d 4665 . . . . . . . . . . . . 13 (𝑡 = 𝑙 → (0 < (𝐴𝑡) ↔ 0 < (𝐴𝑙)))
4340, 42anbi12d 747 . . . . . . . . . . . 12 (𝑡 = 𝑙 → (((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))))
4443cbvrexv 3172 . . . . . . . . . . 11 (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)))
454adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4645nn0red 11352 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
474ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℕ0)
4847nn0red 11352 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) ∈ ℝ)
49 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
5049adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ)
5150nnred 11035 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℝ)
52 1zzd 11408 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 1 ∈ ℤ)
5314ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
54 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
55 eqidd 2623 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)))
56 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → 𝑚 = 𝑡)
5756fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → (𝐴𝑚) = (𝐴𝑡))
5857, 56oveq12d 6668 . . . . . . . . . . . . . . . . . . 19 (((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) ∧ 𝑚 = 𝑡) → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
59 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ)
60 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6159nnnn0d 11351 . . . . . . . . . . . . . . . . . . . 20 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6260, 61nn0mulcld 11356 . . . . . . . . . . . . . . . . . . 19 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6355, 58, 59, 62fvmptd 6288 . . . . . . . . . . . . . . . . . 18 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6453, 54, 63syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))‘𝑡) = ((𝐴𝑡) · 𝑡))
6514adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝐴:ℕ⟶ℕ0)
6665ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
6754nnnn0d 11351 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℕ0)
6866, 67nn0mulcld 11356 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℕ0)
6968nn0red 11352 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
70 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡 → (𝐴𝑚) = (𝐴𝑡))
71 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑡𝑚 = 𝑡)
7270, 71oveq12d 6668 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑡 → ((𝐴𝑚) · 𝑚) = ((𝐴𝑡) · 𝑡))
7372cbvmptv 4750 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐴𝑡) · 𝑡))
7468, 73fmptd 6385 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0)
75 nn0sscn 11297 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℂ
76 fss 6056 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
7774, 75, 76sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ)
78 nnex 11026 . . . . . . . . . . . . . . . . . . . . 21 ℕ ∈ V
79 0nn0 11307 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
80 eqid 2622 . . . . . . . . . . . . . . . . . . . . . 22 (ℂ ∖ {0}) = (ℂ ∖ {0})
8180ffs2 29503 . . . . . . . . . . . . . . . . . . . . 21 ((ℕ ∈ V ∧ 0 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8278, 79, 81mp3an12 1414 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)):ℕ⟶ℂ → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
8377, 82syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) = ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})))
84 frnnn0supp 11349 . . . . . . . . . . . . . . . . . . . . . 22 ((ℕ ∈ V ∧ 𝐴:ℕ⟶ℕ0) → (𝐴 supp 0) = (𝐴 “ ℕ))
8578, 65, 84sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) = (𝐴 “ ℕ))
8613simprd 479 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
8786adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 “ ℕ) ∈ Fin)
8885, 87eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴 supp 0) ∈ Fin)
8978a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → ℕ ∈ V)
9079a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0 → 0 ∈ ℕ0)
91 ffn 6045 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
92 simp3 1063 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (𝐴𝑡) = 0)
9392oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
94 simp2 1062 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℕ)
9594nncnd 11036 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → 𝑡 ∈ ℂ)
9695mul02d 10234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → (0 · 𝑡) = 0)
9793, 96eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴:ℕ⟶ℕ0𝑡 ∈ ℕ ∧ (𝐴𝑡) = 0) → ((𝐴𝑡) · 𝑡) = 0)
9873, 89, 90, 91, 97suppss3 29502 . . . . . . . . . . . . . . . . . . . . 21 (𝐴:ℕ⟶ℕ0 → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
9965, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0))
100 ssfi 8180 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 supp 0) ∈ Fin ∧ ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ⊆ (𝐴 supp 0)) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10188, 99, 100syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) supp 0) ∈ Fin)
10283, 101eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚)) “ (ℂ ∖ {0})) ∈ Fin)
10321, 52, 77, 102fsumcvg4 29996 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → seq1( + , (𝑚 ∈ ℕ ↦ ((𝐴𝑚) · 𝑚))) ∈ dom ⇝ )
10421, 52, 64, 69, 103isumrecl 14496 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
105104adantr 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ∈ ℝ)
106 simprl 794 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < 𝑙)
10714ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℕ0)
108107adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℕ0)
109108nn0red 11352 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝐴𝑙) ∈ ℝ)
110109, 51remulcld 10070 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ∈ ℝ)
11150nnnn0d 11351 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ∈ ℕ0)
112111nn0ge0d 11354 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 ≤ 𝑙)
113 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 0 < (𝐴𝑙))
114 elnnnn0b 11337 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ ↔ ((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)))
115 nnge1 11046 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑙) ∈ ℕ → 1 ≤ (𝐴𝑙))
116114, 115sylbir 225 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑙) ∈ ℕ0 ∧ 0 < (𝐴𝑙)) → 1 ≤ (𝐴𝑙))
117108, 113, 116syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 1 ≤ (𝐴𝑙))
11851, 109, 112, 117lemulge12d 10962 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ ((𝐴𝑙) · 𝑙))
119107nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → (𝐴𝑙) ∈ ℂ)
12049nncnd 11036 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℂ)
121119, 120mulcld 10060 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ∈ ℂ)
122 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑙𝑡 = 𝑙)
12341, 122oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑙 → ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
124123sumsn 14475 . . . . . . . . . . . . . . . . . . 19 ((𝑙 ∈ ℕ ∧ ((𝐴𝑙) · 𝑙) ∈ ℂ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
12549, 121, 124syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) = ((𝐴𝑙) · 𝑙))
126 snfi 8038 . . . . . . . . . . . . . . . . . . . 20 {𝑙} ∈ Fin
127126a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ∈ Fin)
12849snssd 4340 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → {𝑙} ⊆ ℕ)
12968nn0ge0d 11354 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 0 ≤ ((𝐴𝑡) · 𝑡))
13021, 52, 127, 128, 64, 69, 129, 103isumless 14577 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → Σ𝑡 ∈ {𝑙} ((𝐴𝑡) · 𝑡) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
131125, 130eqbrtrrd 4677 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
132131adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → ((𝐴𝑙) · 𝑙) ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13351, 110, 105, 118, 132letrd 10194 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → 𝑙 ≤ Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13448, 51, 105, 106, 133ltletrd 10197 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑙 ∈ ℕ) ∧ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
135134r19.29an 3077 . . . . . . . . . . . . 13 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → (𝑆𝐴) < Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡))
13646, 135gtned 10172 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ ∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙))) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴))
137136ex 450 . . . . . . . . . . 11 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (∃𝑙 ∈ ℕ ((𝑆𝐴) < 𝑙 ∧ 0 < (𝐴𝑙)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
13844, 137syl5bi 232 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) → Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) ≠ (𝑆𝐴)))
139138necon2bd 2810 . . . . . . . . 9 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (Σ𝑡 ∈ ℕ ((𝐴𝑡) · 𝑡) = (𝑆𝐴) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡))))
14039, 139mpd 15 . . . . . . . 8 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
141 ralnex 2992 . . . . . . . 8 (∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)) ↔ ¬ ∃𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
142140, 141sylibr 224 . . . . . . 7 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
143 imnan 438 . . . . . . . 8 (((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
144143ralbii 2980 . . . . . . 7 (∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)) ↔ ∀𝑡 ∈ ℕ ¬ ((𝑆𝐴) < 𝑡 ∧ 0 < (𝐴𝑡)))
145142, 144sylibr 224 . . . . . 6 (𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → ∀𝑡 ∈ ℕ ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
146145r19.21bi 2932 . . . . 5 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝑆𝐴) < 𝑡 → ¬ 0 < (𝐴𝑡)))
147146imp 445 . . . 4 (((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ (𝑆𝐴) < 𝑡) → ¬ 0 < (𝐴𝑡))
14817, 12, 33, 147syl21anc 1325 . . 3 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ¬ 0 < (𝐴𝑡))
149 nn0re 11301 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (𝐴𝑡) ∈ ℝ)
150 0red 10041 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → 0 ∈ ℝ)
151149, 150lenltd 10183 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ ¬ 0 < (𝐴𝑡)))
152 nn0le0eq0 11321 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → ((𝐴𝑡) ≤ 0 ↔ (𝐴𝑡) = 0))
153151, 152bitr3d 270 . . . 4 ((𝐴𝑡) ∈ ℕ0 → (¬ 0 < (𝐴𝑡) ↔ (𝐴𝑡) = 0))
154153biimpa 501 . . 3 (((𝐴𝑡) ∈ ℕ0 ∧ ¬ 0 < (𝐴𝑡)) → (𝐴𝑡) = 0)
15516, 148, 154syl2anc 693 . 2 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
1568, 155sylbir 225 1 ((𝐴 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cin 3573  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117  wf 5884  cfv 5888  (class class class)co 6650   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  eulerpartlemsv3  30423  eulerpartlemgc  30424
  Copyright terms: Public domain W3C validator