![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlf1 | Structured version Visualization version GIF version |
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
evlf1.e | ⊢ 𝐸 = (𝐶 evalF 𝐷) |
evlf1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
evlf1.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
evlf1.b | ⊢ 𝐵 = (Base‘𝐶) |
evlf1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
evlf1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
evlf1 | ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlf1.e | . . . 4 ⊢ 𝐸 = (𝐶 evalF 𝐷) | |
2 | evlf1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | evlf1.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | evlf1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
5 | eqid 2622 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
6 | eqid 2622 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
7 | eqid 2622 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
8 | 1, 2, 3, 4, 5, 6, 7 | evlfval 16857 | . . 3 ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
9 | ovex 6678 | . . . . 5 ⊢ (𝐶 Func 𝐷) ∈ V | |
10 | fvex 6201 | . . . . . 6 ⊢ (Base‘𝐶) ∈ V | |
11 | 4, 10 | eqeltri 2697 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | 9, 11 | mpt2ex 7247 | . . . 4 ⊢ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)) ∈ V |
13 | 9, 11 | xpex 6962 | . . . . 5 ⊢ ((𝐶 Func 𝐷) × 𝐵) ∈ V |
14 | 13, 13 | mpt2ex 7247 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔)))) ∈ V |
15 | 12, 14 | op1std 7178 | . . 3 ⊢ (𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝐶)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝐷)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
16 | 8, 15 | syl 17 | . 2 ⊢ (𝜑 → (1st ‘𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥))) |
17 | simprl 794 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | |
18 | 17 | fveq2d 6195 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
19 | simprr 796 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | |
20 | 18, 19 | fveq12d 6197 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
21 | evlf1.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
22 | evlf1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
23 | fvexd 6203 | . 2 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑋) ∈ V) | |
24 | 16, 20, 21, 22, 23 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⦋csb 3533 〈cop 4183 × cxp 5112 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1st c1st 7166 2nd c2nd 7167 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 Func cfunc 16514 Nat cnat 16601 evalF cevlf 16849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-evlf 16853 |
This theorem is referenced by: evlfcllem 16861 evlfcl 16862 uncf1 16876 yonedalem3a 16914 yonedalem3b 16919 yonedainv 16921 yonffthlem 16922 |
Copyright terms: Public domain | W3C validator |