MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   GIF version

Theorem evlfcl 16862
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
evlfcl (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))

Proof of Theorem evlfcl
Dummy variables 𝑓 𝑎 𝑔 𝑚 𝑛 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . . 5 (𝜑𝐷 ∈ Cat)
4 eqid 2622 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2622 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2622 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2622 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 16857 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 6678 . . . . . 6 (𝐶 Func 𝐷) ∈ V
10 fvex 6201 . . . . . 6 (Base‘𝐶) ∈ V
119, 10mpt2ex 7247 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 6962 . . . . . 6 ((𝐶 Func 𝐷) × (Base‘𝐶)) ∈ V
1312, 12mpt2ex 7247 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13opelvv 5166 . . . 4 ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ ∈ (V × V)
158, 14syl6eqel 2709 . . 3 (𝜑𝐸 ∈ (V × V))
16 1st2nd2 7205 . . 3 (𝐸 ∈ (V × V) → 𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
1715, 16syl 17 . 2 (𝜑𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
18 eqid 2622 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
19 evlfcl.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
2019fucbas 16620 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
2118, 20, 4xpcbas 16818 . . . 4 ((𝐶 Func 𝐷) × (Base‘𝐶)) = (Base‘(𝑄 ×c 𝐶))
22 eqid 2622 . . . 4 (Base‘𝐷) = (Base‘𝐷)
23 eqid 2622 . . . 4 (Hom ‘(𝑄 ×c 𝐶)) = (Hom ‘(𝑄 ×c 𝐶))
24 eqid 2622 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
25 eqid 2622 . . . 4 (Id‘(𝑄 ×c 𝐶)) = (Id‘(𝑄 ×c 𝐶))
26 eqid 2622 . . . 4 (Id‘𝐷) = (Id‘𝐷)
27 eqid 2622 . . . 4 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
2819, 2, 3fuccat 16630 . . . . 5 (𝜑𝑄 ∈ Cat)
2918, 28, 2xpccat 16830 . . . 4 (𝜑 → (𝑄 ×c 𝐶) ∈ Cat)
30 relfunc 16522 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
31 simpr 477 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 7217 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
3330, 31, 32sylancr 695 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
344, 22, 33funcf1 16526 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelrnda 6359 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐶 Func 𝐷)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3635ralrimiva 2966 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3736ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
38 eqid 2622 . . . . . . 7 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥))
3938fmpt2 7237 . . . . . 6 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4037, 39sylib 208 . . . . 5 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4111, 13op1std 7178 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
428, 41syl 17 . . . . . 6 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
4342feq1d 6030 . . . . 5 (𝜑 → ((1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷)))
4440, 43mpbird 247 . . . 4 (𝜑 → (1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
45 eqid 2622 . . . . . 6 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))
46 ovex 6678 . . . . . . . . 9 (𝑚(𝐶 Nat 𝐷)𝑛) ∈ V
47 ovex 6678 . . . . . . . . 9 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4846, 47mpt2ex 7247 . . . . . . . 8 (𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
4948csbex 4793 . . . . . . 7 (1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5049csbex 4793 . . . . . 6 (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5145, 50fnmpt2i 7239 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))
5211, 13op2ndd 7179 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
538, 52syl 17 . . . . . 6 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
5453fneq1d 5981 . . . . 5 (𝜑 → ((2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))) ↔ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))))
5551, 54mpbiri 248 . . . 4 (𝜑 → (2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))))
563ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5756adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝐷 ∈ Cat)
58 simplrl 800 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
5930, 58, 32sylancr 695 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
604, 22, 59funcf1 16526 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
6160adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
62 simplrr 801 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
6362adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑢 ∈ (Base‘𝐶))
6461, 63ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
65 simplrr 801 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑣 ∈ (Base‘𝐶))
6661, 65ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑣) ∈ (Base‘𝐷))
67 simprl 794 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑔 ∈ (𝐶 Func 𝐷))
68 1st2ndbr 7217 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
6930, 67, 68sylancr 695 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
704, 22, 69funcf1 16526 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7170adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7271, 65ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑔)‘𝑣) ∈ (Base‘𝐷))
73 simprr 796 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑣 ∈ (Base‘𝐶))
744, 5, 24, 59, 62, 73funcf2 16528 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
7574adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
76 simprr 796 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ∈ (𝑢(Hom ‘𝐶)𝑣))
7775, 76ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑢(2nd𝑓)𝑣)‘) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
78 simprl 794 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))
797, 78nat1st2nd 16611 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐶 Nat 𝐷)⟨(1st𝑔), (2nd𝑔)⟩))
807, 79, 4, 24, 65natcl 16613 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑎𝑣) ∈ (((1st𝑓)‘𝑣)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 16346 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8281ralrimivva 2971 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
83 eqid 2622 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)))
8483fmpt2 7237 . . . . . . . . . . . . 13 (∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8582, 84sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
862ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
87 eqid 2622 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 16858 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))))
8988feq1d 6030 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9085, 89mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9119, 7fuchom 16621 . . . . . . . . . . . . 13 (𝐶 Nat 𝐷) = (Hom ‘𝑄)
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 16826 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = ((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣)))
931, 86, 56, 4, 58, 62evlf1 16860 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
941, 86, 56, 4, 67, 73evlf1 16860 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑔(1st𝐸)𝑣) = ((1st𝑔)‘𝑣))
9593, 94oveq12d 6668 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9692, 95feq23d 6040 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9790, 96mpbird 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9897ralrimivva 2971 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9998ralrimivva 2971 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
100 oveq2 6658 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(2nd𝐸)𝑦) = (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩))
101 oveq2 6658 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
102 fveq2 6191 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨𝑔, 𝑣⟩))
103 df-ov 6653 . . . . . . . . . . . . . 14 (𝑔(1st𝐸)𝑣) = ((1st𝐸)‘⟨𝑔, 𝑣⟩)
104102, 103syl6eqr 2674 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = (𝑔(1st𝐸)𝑣))
105104oveq2d 6666 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) = (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
106100, 101, 105feq123d 6034 . . . . . . . . . . 11 (𝑦 = ⟨𝑔, 𝑣⟩ → ((𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
107106ralxp 5263 . . . . . . . . . 10 (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
108 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩))
109 oveq1 6657 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
110 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨𝑓, 𝑢⟩))
111 df-ov 6653 . . . . . . . . . . . . . 14 (𝑓(1st𝐸)𝑢) = ((1st𝐸)‘⟨𝑓, 𝑢⟩)
112110, 111syl6eqr 2674 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = (𝑓(1st𝐸)𝑢))
113112oveq1d 6665 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
114108, 109, 113feq123d 6034 . . . . . . . . . . 11 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
1151142ralbidv 2989 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
116107, 115syl5bb 272 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
117116ralxp 5263 . . . . . . . 8 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
11899, 117sylibr 224 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
119118r19.21bi 2932 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
120119r19.21bi 2932 . . . . 5 (((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
121120anasss 679 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
12228adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑄 ∈ Cat)
1232adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
124 eqid 2622 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
125 eqid 2622 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
126 simprl 794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
127 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 16829 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩) = ⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
129128fveq2d 6195 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩))
130 df-ov 6653 . . . . . . . . 9 (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
131129, 130syl6eqr 2674 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)))
1323adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
133 eqid 2622 . . . . . . . . 9 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)
13420, 91, 124, 122, 126catidcl 16343 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) ∈ (𝑓(𝐶 Nat 𝐷)𝑓))
1354, 5, 125, 123, 127catidcl 16343 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑢) ∈ (𝑢(Hom ‘𝐶)𝑢))
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 16859 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))))
13730, 126, 32sylancr 695 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
1384, 22, 137funcf1 16526 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
139138, 127ffvelrnd 6360 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
14022, 24, 26, 132, 139catidcl 16343 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘((1st𝑓)‘𝑢)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑢)))
14122, 24, 26, 132, 139, 6, 139, 140catlid 16344 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
14219, 124, 26, 126fucid 16631 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) = ((Id‘𝐷) ∘ (1st𝑓)))
143142fveq1d 6193 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = (((Id‘𝐷) ∘ (1st𝑓))‘𝑢))
144 fvco3 6275 . . . . . . . . . . . 12 (((1st𝑓):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑢 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
145138, 127, 144syl2anc 693 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
146143, 145eqtrd 2656 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
1474, 125, 26, 137, 127funcid 16530 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
148146, 147oveq12d 6668 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))))
1491, 123, 132, 4, 126, 127evlf1 16860 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
150149fveq2d 6195 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
151141, 148, 1503eqtr4d 2666 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
152131, 136, 1513eqtrd 2660 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
153152ralrimivva 2971 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
154 id 22 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → 𝑥 = ⟨𝑓, 𝑢⟩)
155154, 154oveq12d 6668 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)𝑥) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩))
156 fveq2 6191 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘(𝑄 ×c 𝐶))‘𝑥) = ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩))
157155, 156fveq12d 6197 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)))
158112fveq2d 6195 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘𝐷)‘((1st𝐸)‘𝑥)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
159157, 158eqeq12d 2637 . . . . . . 7 (𝑥 = ⟨𝑓, 𝑢⟩ → (((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢))))
160159ralxp 5263 . . . . . 6 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
161153, 160sylibr 224 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
162161r19.21bi 2932 . . . 4 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
16323ad2ant1 1082 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
16433ad2ant1 1082 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐷 ∈ Cat)
165 simp21 1094 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
166 1st2nd2 7205 . . . . . . . . 9 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
167165, 166syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
168167, 165eqeltrrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
169 opelxp 5146 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
170168, 169sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
171 simp22 1095 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
172 1st2nd2 7205 . . . . . . . . 9 (𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
173171, 172syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
174173, 171eqeltrrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
175 opelxp 5146 . . . . . . 7 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
176174, 175sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
177 simp23 1096 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
178 1st2nd2 7205 . . . . . . . . 9 (𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
179177, 178syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
180179, 177eqeltrrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
181 opelxp 5146 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
182180, 181sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
183 simp3l 1089 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦))
18418, 21, 91, 5, 23, 165, 171xpchom 16820 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
185183, 184eleqtrd 2703 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
186 1st2nd2 7205 . . . . . . . . 9 (𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
187185, 186syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
188187, 185eqeltrrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
189 opelxp 5146 . . . . . . 7 (⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) ↔ ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
190188, 189sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
191 simp3r 1090 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))
19218, 21, 91, 5, 23, 171, 177xpchom 16820 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧) = (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
193191, 192eleqtrd 2703 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
194 1st2nd2 7205 . . . . . . . . 9 (𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
195193, 194syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
196195, 193eqeltrrd 2702 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
197 opelxp 5146 . . . . . . 7 (⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) ↔ ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
198196, 197sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 16861 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
200167, 179oveq12d 6668 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
201167, 173opeq12d 4410 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
202201, 179oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
203202, 195, 187oveq123d 6671 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
204200, 203fveq12d 6197 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)))
205167fveq2d 6195 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩))
206173fveq2d 6195 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩))
207205, 206opeq12d 4410 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩ = ⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩)
208179fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
209207, 208oveq12d 6668 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧)) = (⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)))
210173, 179oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(2nd𝐸)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
211210, 195fveq12d 6197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑦(2nd𝐸)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
212167, 173oveq12d 6668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩))
213212, 187fveq12d 6197 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
214209, 211, 213oveq123d 6671 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
215199, 204, 2143eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)))
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 16525 . . 3 (𝜑 → (1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸))
217 df-br 4654 . . 3 ((1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸) ↔ ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
218216, 217sylib 208 . 2 (𝜑 → ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
21917, 218eqeltrd 2701 1 (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  cop 4183   class class class wbr 4653   × cxp 5112  ccom 5118  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326   Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602   ×c cxpc 16808   evalF cevlf 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603  df-fuc 16604  df-xpc 16812  df-evlf 16853
This theorem is referenced by:  uncfcl  16875  uncf1  16876  uncf2  16877  yonedalem1  16912
  Copyright terms: Public domain W3C validator