MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf1 Structured version   Visualization version   Unicode version

Theorem evlf1 16860
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlf1.e  |-  E  =  ( C evalF  D )
evlf1.c  |-  ( ph  ->  C  e.  Cat )
evlf1.d  |-  ( ph  ->  D  e.  Cat )
evlf1.b  |-  B  =  ( Base `  C
)
evlf1.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
evlf1.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
evlf1  |-  ( ph  ->  ( F ( 1st `  E ) X )  =  ( ( 1st `  F ) `  X
) )

Proof of Theorem evlf1
Dummy variables  x  y  f  a  g  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf1.e . . . 4  |-  E  =  ( C evalF  D )
2 evlf1.c . . . 4  |-  ( ph  ->  C  e.  Cat )
3 evlf1.d . . . 4  |-  ( ph  ->  D  e.  Cat )
4 evlf1.b . . . 4  |-  B  =  ( Base `  C
)
5 eqid 2622 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
6 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
7 eqid 2622 . . . 4  |-  ( C Nat 
D )  =  ( C Nat  D )
81, 2, 3, 4, 5, 6, 7evlfval 16857 . . 3  |-  ( ph  ->  E  =  <. (
f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C  Func  D
)  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >. )
9 ovex 6678 . . . . 5  |-  ( C 
Func  D )  e.  _V
10 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
114, 10eqeltri 2697 . . . . 5  |-  B  e. 
_V
129, 11mpt2ex 7247 . . . 4  |-  ( f  e.  ( C  Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) )  e.  _V
139, 11xpex 6962 . . . . 5  |-  ( ( C  Func  D )  X.  B )  e.  _V
1413, 13mpt2ex 7247 . . . 4  |-  ( x  e.  ( ( C 
Func  D )  X.  B
) ,  y  e.  ( ( C  Func  D )  X.  B ) 
|->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) )  e.  _V
1512, 14op1std 7178 . . 3  |-  ( E  =  <. ( f  e.  ( C  Func  D
) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) ) ,  ( x  e.  ( ( C  Func  D )  X.  B ) ,  y  e.  ( ( C 
Func  D )  X.  B
)  |->  [_ ( 1st `  x
)  /  m ]_ [_ ( 1st `  y
)  /  n ]_ ( a  e.  ( m ( C Nat  D
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  C
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  D )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >.  ->  ( 1st `  E )  =  ( f  e.  ( C 
Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `
 x ) ) )
168, 15syl 17 . 2  |-  ( ph  ->  ( 1st `  E
)  =  ( f  e.  ( C  Func  D ) ,  x  e.  B  |->  ( ( 1st `  f ) `  x
) ) )
17 simprl 794 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  x  =  X ) )  -> 
f  =  F )
1817fveq2d 6195 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  x  =  X ) )  -> 
( 1st `  f
)  =  ( 1st `  F ) )
19 simprr 796 . . 3  |-  ( (
ph  /\  ( f  =  F  /\  x  =  X ) )  ->  x  =  X )
2018, 19fveq12d 6197 . 2  |-  ( (
ph  /\  ( f  =  F  /\  x  =  X ) )  -> 
( ( 1st `  f
) `  x )  =  ( ( 1st `  F ) `  X
) )
21 evlf1.f . 2  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
22 evlf1.x . 2  |-  ( ph  ->  X  e.  B )
23 fvexd 6203 . 2  |-  ( ph  ->  ( ( 1st `  F
) `  X )  e.  _V )
2416, 20, 21, 22, 23ovmpt2d 6788 1  |-  ( ph  ->  ( F ( 1st `  E ) X )  =  ( ( 1st `  F ) `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325    Func cfunc 16514   Nat cnat 16601   evalF cevlf 16849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-evlf 16853
This theorem is referenced by:  evlfcllem  16861  evlfcl  16862  uncf1  16876  yonedalem3a  16914  yonedalem3b  16919  yonedainv  16921  yonffthlem  16922
  Copyright terms: Public domain W3C validator