MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   GIF version

Theorem expval 12862
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))

Proof of Theorem expval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑦 = 𝑁)
21eqeq1d 2624 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → (𝑦 = 0 ↔ 𝑁 = 0))
31breq2d 4665 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (0 < 𝑦 ↔ 0 < 𝑁))
4 simpl 473 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝑁) → 𝑥 = 𝐴)
54sneqd 4189 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑁) → {𝑥} = {𝐴})
65xpeq2d 5139 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → (ℕ × {𝑥}) = (ℕ × {𝐴}))
76seqeq3d 12809 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → seq1( · , (ℕ × {𝑥})) = seq1( · , (ℕ × {𝐴})))
87, 1fveq12d 6197 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘𝑦) = (seq1( · , (ℕ × {𝐴}))‘𝑁))
91negeqd 10275 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝑁) → -𝑦 = -𝑁)
107, 9fveq12d 6197 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝑁) → (seq1( · , (ℕ × {𝑥}))‘-𝑦) = (seq1( · , (ℕ × {𝐴}))‘-𝑁))
1110oveq2d 6666 . . . 4 ((𝑥 = 𝐴𝑦 = 𝑁) → (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)) = (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))
123, 8, 11ifbieq12d 4113 . . 3 ((𝑥 = 𝐴𝑦 = 𝑁) → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))
132, 12ifbieq2d 4111 . 2 ((𝑥 = 𝐴𝑦 = 𝑁) → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
14 df-exp 12861 . 2 ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
15 1ex 10035 . . 3 1 ∈ V
16 fvex 6201 . . . 4 (seq1( · , (ℕ × {𝐴}))‘𝑁) ∈ V
17 ovex 6678 . . . 4 (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)) ∈ V
1816, 17ifex 4156 . . 3 if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))) ∈ V
1915, 18ifex 4156 . 2 if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))) ∈ V
2013, 14, 19ovmpt2a 6791 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  {csn 4177   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  -cneg 10267   / cdiv 10684  cn 11020  cz 11377  seqcseq 12801  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-neg 10269  df-seq 12802  df-exp 12861
This theorem is referenced by:  expnnval  12863  exp0  12864  expneg  12868
  Copyright terms: Public domain W3C validator