Proof of Theorem expneg
| Step | Hyp | Ref
| Expression |
| 1 | | elnn0 11294 |
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 2 | | nnne0 11053 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 3 | 2 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 4 | | nncn 11028 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 5 | 4 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 6 | 5 | negeq0d 10384 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 = 0 ↔ -𝑁 = 0)) |
| 7 | 6 | necon3abid 2830 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) |
| 8 | 3, 7 | mpbid 222 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬
-𝑁 = 0) |
| 9 | 8 | iffalsed 4097 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) →
if(-𝑁 = 0, 1, if(0 <
-𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁)))) = if(0 < -𝑁, (seq1( · , (ℕ
× {𝐴}))‘-𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}))‘--𝑁)))) |
| 10 | | nnnn0 11299 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 11 | 10 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 12 | | nn0nlt0 11319 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ¬ 𝑁 <
0) |
| 13 | 11, 12 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬
𝑁 < 0) |
| 14 | 11 | nn0red 11352 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℝ) |
| 15 | 14 | lt0neg1d 10597 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 < 0 ↔ 0 < -𝑁)) |
| 16 | 13, 15 | mtbid 314 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ¬ 0
< -𝑁) |
| 17 | 16 | iffalsed 4097 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → if(0
< -𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))) = (1 / (seq1( · ,
(ℕ × {𝐴}))‘--𝑁))) |
| 18 | 5 | negnegd 10383 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
| 19 | 18 | fveq2d 6195 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1(
· , (ℕ × {𝐴}))‘--𝑁) = (seq1( · , (ℕ ×
{𝐴}))‘𝑁)) |
| 20 | 19 | oveq2d 6666 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 /
(seq1( · , (ℕ × {𝐴}))‘--𝑁)) = (1 / (seq1( · , (ℕ ×
{𝐴}))‘𝑁))) |
| 21 | 9, 17, 20 | 3eqtrd 2660 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) →
if(-𝑁 = 0, 1, if(0 <
-𝑁, (seq1( · ,
(ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁)))) = (1 / (seq1( · ,
(ℕ × {𝐴}))‘𝑁))) |
| 22 | | nnnegz 11380 |
. . . . 5
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℤ) |
| 23 | | expval 12862 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))))) |
| 24 | 22, 23 | sylan2 491 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = if(-𝑁 = 0, 1, if(0 < -𝑁, (seq1( · , (ℕ × {𝐴}))‘-𝑁), (1 / (seq1( · , (ℕ ×
{𝐴}))‘--𝑁))))) |
| 25 | | expnnval 12863 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ ×
{𝐴}))‘𝑁)) |
| 26 | 25 | oveq2d 6666 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 /
(𝐴↑𝑁)) = (1 / (seq1( · , (ℕ ×
{𝐴}))‘𝑁))) |
| 27 | 21, 24, 26 | 3eqtr4d 2666 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 28 | | 1div1e1 10717 |
. . . . 5
⊢ (1 / 1) =
1 |
| 29 | 28 | eqcomi 2631 |
. . . 4
⊢ 1 = (1 /
1) |
| 30 | | negeq 10273 |
. . . . . . 7
⊢ (𝑁 = 0 → -𝑁 = -0) |
| 31 | | neg0 10327 |
. . . . . . 7
⊢ -0 =
0 |
| 32 | 30, 31 | syl6eq 2672 |
. . . . . 6
⊢ (𝑁 = 0 → -𝑁 = 0) |
| 33 | 32 | oveq2d 6666 |
. . . . 5
⊢ (𝑁 = 0 → (𝐴↑-𝑁) = (𝐴↑0)) |
| 34 | | exp0 12864 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
| 35 | 33, 34 | sylan9eqr 2678 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = 1) |
| 36 | | oveq2 6658 |
. . . . . 6
⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) |
| 37 | 36, 34 | sylan9eqr 2678 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑𝑁) = 1) |
| 38 | 37 | oveq2d 6666 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (1 / (𝐴↑𝑁)) = (1 / 1)) |
| 39 | 29, 35, 38 | 3eqtr4a 2682 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 40 | 27, 39 | jaodan 826 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 41 | 1, 40 | sylan2b 492 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |