MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expval Structured version   Visualization version   Unicode version

Theorem expval 12862
Description: Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expval  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )

Proof of Theorem expval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  y  =  N )
21eqeq1d 2624 . . 3  |-  ( ( x  =  A  /\  y  =  N )  ->  ( y  =  0  <-> 
N  =  0 ) )
31breq2d 4665 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  ( 0  <  y  <->  0  <  N ) )
4 simpl 473 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  N )  ->  x  =  A )
54sneqd 4189 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  N )  ->  { x }  =  { A } )
65xpeq2d 5139 . . . . . 6  |-  ( ( x  =  A  /\  y  =  N )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { A } ) )
76seqeq3d 12809 . . . . 5  |-  ( ( x  =  A  /\  y  =  N )  ->  seq 1 (  x.  ,  ( NN  X.  { x } ) )  =  seq 1
(  x.  ,  ( NN  X.  { A } ) ) )
87, 1fveq12d 6197 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
91negeqd 10275 . . . . . 6  |-  ( ( x  =  A  /\  y  =  N )  -> 
-u y  =  -u N )
107, 9fveq12d 6197 . . . . 5  |-  ( ( x  =  A  /\  y  =  N )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  -u y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) )
1110oveq2d 6666 . . . 4  |-  ( ( x  =  A  /\  y  =  N )  ->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ) )
123, 8, 11ifbieq12d 4113 . . 3  |-  ( ( x  =  A  /\  y  =  N )  ->  if ( 0  < 
y ,  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) )  =  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )
132, 12ifbieq2d 4111 . 2  |-  ( ( x  =  A  /\  y  =  N )  ->  if ( y  =  0 ,  1 ,  if ( 0  < 
y ,  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
14 df-exp 12861 . 2  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ) `
 -u y ) ) ) ) )
15 1ex 10035 . . 3  |-  1  e.  _V
16 fvex 6201 . . . 4  |-  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N )  e.  _V
17 ovex 6678 . . . 4  |-  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) )  e. 
_V
1816, 17ifex 4156 . . 3  |-  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) )  e.  _V
1915, 18ifex 4156 . 2  |-  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) )  e.  _V
2013, 14, 19ovmpt2a 6791 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074   -ucneg 10267    / cdiv 10684   NNcn 11020   ZZcz 11377    seqcseq 12801   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-neg 10269  df-seq 12802  df-exp 12861
This theorem is referenced by:  expnnval  12863  exp0  12864  expneg  12868
  Copyright terms: Public domain W3C validator