MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfneii Structured version   Visualization version   GIF version

Theorem fcfneii 21841
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfneii (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)

Proof of Theorem fcfneii
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fcfnei 21839 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
2 ineq1 3807 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑠)))
32neeq1d 2853 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑠)) ≠ ∅))
4 imaeq2 5462 . . . . . . . . 9 (𝑠 = 𝑆 → (𝐹𝑠) = (𝐹𝑆))
54ineq2d 3814 . . . . . . . 8 (𝑠 = 𝑆 → (𝑁 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑆)))
65neeq1d 2853 . . . . . . 7 (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
73, 6rspc2v 3322 . . . . . 6 ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
87ex 450 . . . . 5 (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
98com3r 87 . . . 4 (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
109adantl 482 . . 3 ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
111, 10syl6bi 243 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))))
12113imp2 1282 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cin 3573  c0 3915  {csn 4177  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  TopOnctopon 20715  neicnei 20901  Filcfil 21649   fClusf cfcf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-fm 21742  df-fcls 21745  df-fcf 21746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator