![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
fcfneii | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcfnei 21839 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | |
2 | ineq1 3807 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑠))) | |
3 | 2 | neeq1d 2853 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
4 | imaeq2 5462 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (𝐹 “ 𝑠) = (𝐹 “ 𝑆)) | |
5 | 4 | ineq2d 3814 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑁 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑆))) |
6 | 5 | neeq1d 2853 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
7 | 3, 6 | rspc2v 3322 | . . . . . 6 ⊢ ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
8 | 7 | ex 450 | . . . . 5 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
9 | 8 | com3r 87 | . . . 4 ⊢ (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
11 | 1, 10 | syl6bi 243 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)))) |
12 | 11 | 3imp2 1282 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∩ cin 3573 ∅c0 3915 {csn 4177 “ cima 5117 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 TopOnctopon 20715 neicnei 20901 Filcfil 21649 fClusf cfcf 21741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-fil 21650 df-fm 21742 df-fcls 21745 df-fcf 21746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |