MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Structured version   Visualization version   GIF version

Theorem fcfnei 21839
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑠,𝐽   𝑛,𝐿,𝑠   𝑛,𝐹,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem fcfnei
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 isfcf 21838 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
2 simpll1 1100 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘𝑋))
3 topontop 20718 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
42, 3syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
5 simpr 477 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 ∈ ((nei‘𝐽)‘{𝐴}))
6 eqid 2622 . . . . . . . . 9 𝐽 = 𝐽
76neii1 20910 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
84, 5, 7syl2anc 693 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
96ntrss2 20861 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
104, 8, 9syl2anc 693 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ⊆ 𝑛)
11 simplr 792 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
12 toponuni 20719 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
132, 12syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1411, 13eleqtrd 2703 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
1514snssd 4340 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
166neiint 20908 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑛 𝐽) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
174, 15, 8, 16syl3anc 1326 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
185, 17mpbid 222 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑛))
19 snssg 4327 . . . . . . . . 9 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2011, 19syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑛) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑛)))
2118, 20mpbird 247 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑛))
226ntropn 20853 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑛 𝐽) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
234, 8, 22syl2anc 693 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑛) ∈ 𝐽)
24 eleq2 2690 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (𝐴𝑜𝐴 ∈ ((int‘𝐽)‘𝑛)))
25 ineq1 3807 . . . . . . . . . . . 12 (𝑜 = ((int‘𝐽)‘𝑛) → (𝑜 ∩ (𝐹𝑠)) = (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)))
2625neeq1d 2853 . . . . . . . . . . 11 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2726ralbidv 2986 . . . . . . . . . 10 (𝑜 = ((int‘𝐽)‘𝑛) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
2824, 27imbi12d 334 . . . . . . . . 9 (𝑜 = ((int‘𝐽)‘𝑛) → ((𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
2928rspcv 3305 . . . . . . . 8 (((int‘𝐽)‘𝑛) ∈ 𝐽 → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3023, 29syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝐴 ∈ ((int‘𝐽)‘𝑛) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅)))
3121, 30mpid 44 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅))
32 ssrin 3838 . . . . . . . 8 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)))
33 ssn0 3976 . . . . . . . . 9 (((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) ∧ (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅) → (𝑛 ∩ (𝐹𝑠)) ≠ ∅)
3433ex 450 . . . . . . . 8 ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ⊆ (𝑛 ∩ (𝐹𝑠)) → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3532, 34syl 17 . . . . . . 7 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → ((((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3635ralimdv 2963 . . . . . 6 (((int‘𝐽)‘𝑛) ⊆ 𝑛 → (∀𝑠𝐿 (((int‘𝐽)‘𝑛) ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3710, 31, 36sylsyld 61 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
3837ralrimdva 2969 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
39 simpl1 1064 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4039, 3syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
41 opnneip 20923 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽𝐴𝑜) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
42413expb 1266 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
4340, 42sylan 488 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝑜 ∈ ((nei‘𝐽)‘{𝐴}))
44 ineq1 3807 . . . . . . . . . . 11 (𝑛 = 𝑜 → (𝑛 ∩ (𝐹𝑠)) = (𝑜 ∩ (𝐹𝑠)))
4544neeq1d 2853 . . . . . . . . . 10 (𝑛 = 𝑜 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4645ralbidv 2986 . . . . . . . . 9 (𝑛 = 𝑜 → (∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4746rspcv 3305 . . . . . . . 8 (𝑜 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4843, 47syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4948expr 643 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (𝐴𝑜 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5049com23 86 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5150ralrimdva 2969 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
5238, 51impbid 202 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅))
5352pm5.32da 673 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
541, 53bitrd 268 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715  intcnt 20821  neicnei 20901  Filcfil 21649   fClusf cfcf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-fm 21742  df-fcls 21745  df-fcf 21746
This theorem is referenced by:  fcfneii  21841
  Copyright terms: Public domain W3C validator