MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Visualization version   GIF version

Theorem fin1a2lem12 9233
Description: Lemma for fin1a2 9237. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)

Proof of Theorem fin1a2lem12
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐵 ∈ FinIII)
2 simpll1 1100 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ⊆ 𝒫 𝐵)
32adantr 481 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → 𝐴 ⊆ 𝒫 𝐵)
4 ssrab2 3687 . . . . . . . 8 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
54unissi 4461 . . . . . . 7 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
6 sspwuni 4611 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
76biimpi 206 . . . . . . 7 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
85, 7syl5ss 3614 . . . . . 6 (𝐴 ⊆ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
93, 8syl 17 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
10 elpw2g 4827 . . . . . 6 (𝐵 ∈ FinIII → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
1110ad2antlr 763 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
129, 11mpbird 247 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵)
13 eqid 2622 . . . 4 (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})
1412, 13fmptd 6385 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵)
15 vex 3203 . . . . . . . . . . 11 𝑑 ∈ V
1615sucex 7011 . . . . . . . . . 10 suc 𝑑 ∈ V
17 sssucid 5802 . . . . . . . . . 10 𝑑 ⊆ suc 𝑑
18 ssdomg 8001 . . . . . . . . . 10 (suc 𝑑 ∈ V → (𝑑 ⊆ suc 𝑑𝑑 ≼ suc 𝑑))
1916, 17, 18mp2 9 . . . . . . . . 9 𝑑 ≼ suc 𝑑
20 domtr 8009 . . . . . . . . 9 ((𝑓𝑑𝑑 ≼ suc 𝑑) → 𝑓 ≼ suc 𝑑)
2119, 20mpan2 707 . . . . . . . 8 (𝑓𝑑𝑓 ≼ suc 𝑑)
2221a1i 11 . . . . . . 7 (𝑓𝐴 → (𝑓𝑑𝑓 ≼ suc 𝑑))
2322ss2rabi 3684 . . . . . 6 {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑}
24 uniss 4458 . . . . . 6 ({𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑} → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
2523, 24mp1i 13 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
26 id 22 . . . . . 6 (𝑑 ∈ ω → 𝑑 ∈ ω)
27 pwexg 4850 . . . . . . . . 9 (𝐵 ∈ FinIII → 𝒫 𝐵 ∈ V)
2827adantl 482 . . . . . . . 8 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝒫 𝐵 ∈ V)
2928, 2ssexd 4805 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ∈ V)
30 rabexg 4812 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
31 uniexg 6955 . . . . . . 7 ({𝑓𝐴𝑓𝑑} ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
3229, 30, 313syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓𝑑} ∈ V)
33 breq2 4657 . . . . . . . . 9 (𝑒 = 𝑑 → (𝑓𝑒𝑓𝑑))
3433rabbidv 3189 . . . . . . . 8 (𝑒 = 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3534unieqd 4446 . . . . . . 7 (𝑒 = 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3635, 13fvmptg 6280 . . . . . 6 ((𝑑 ∈ ω ∧ {𝑓𝐴𝑓𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
3726, 32, 36syl2anr 495 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
38 peano2 7086 . . . . . 6 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
39 rabexg 4812 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
40 uniexg 6955 . . . . . . 7 ({𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
4129, 39, 403syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
42 breq2 4657 . . . . . . . . 9 (𝑒 = suc 𝑑 → (𝑓𝑒𝑓 ≼ suc 𝑑))
4342rabbidv 3189 . . . . . . . 8 (𝑒 = suc 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4443unieqd 4446 . . . . . . 7 (𝑒 = suc 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4544, 13fvmptg 6280 . . . . . 6 ((suc 𝑑 ∈ ω ∧ {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4638, 41, 45syl2anr 495 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4725, 37, 463sstr4d 3648 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
4847ralrimiva 2966 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
49 fin34i 9203 . . 3 ((𝐵 ∈ FinIII ∧ (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵 ∧ ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
501, 14, 48, 49syl3anc 1326 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
51 fin1a2lem11 9232 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5251adantrr 753 . . . . 5 (( [] Or 𝐴 ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
53523ad2antl2 1224 . . . 4 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5453adantr 481 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
55 simpll3 1102 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴𝐴)
56 simplrr 801 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ≠ ∅)
57 sspwuni 4611 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ ∅)
58 ss0b 3973 . . . . . . . . . . 11 ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
5957, 58bitri 264 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 = ∅)
60 pw0 4343 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
6160sseq2i 3630 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ {∅})
62 sssn 4358 . . . . . . . . . . . 12 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
6361, 62bitri 264 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
64 df-ne 2795 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65 0ex 4790 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
6665unisn 4451 . . . . . . . . . . . . . . . 16 {∅} = ∅
6765snid 4208 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅}
6866, 67eqeltri 2697 . . . . . . . . . . . . . . 15 {∅} ∈ {∅}
69 unieq 4444 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
70 id 22 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
7169, 70eleq12d 2695 . . . . . . . . . . . . . . 15 (𝐴 = {∅} → ( 𝐴𝐴 {∅} ∈ {∅}))
7268, 71mpbiri 248 . . . . . . . . . . . . . 14 (𝐴 = {∅} → 𝐴𝐴)
7372orim2i 540 . . . . . . . . . . . . 13 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 = ∅ ∨ 𝐴𝐴))
7473ord 392 . . . . . . . . . . . 12 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (¬ 𝐴 = ∅ → 𝐴𝐴))
7564, 74syl5bi 232 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ≠ ∅ → 𝐴𝐴))
7663, 75sylbi 207 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7759, 76sylbir 225 . . . . . . . . 9 ( 𝐴 = ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7877com12 32 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 = ∅ → 𝐴𝐴))
7978con3d 148 . . . . . . 7 (𝐴 ≠ ∅ → (¬ 𝐴𝐴 → ¬ 𝐴 = ∅))
8056, 55, 79sylc 65 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴 = ∅)
81 ioran 511 . . . . . 6 (¬ ( 𝐴𝐴 𝐴 = ∅) ↔ (¬ 𝐴𝐴 ∧ ¬ 𝐴 = ∅))
8255, 80, 81sylanbrc 698 . . . . 5 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ( 𝐴𝐴 𝐴 = ∅))
83 uniun 4456 . . . . . . . 8 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
8466uneq2i 3764 . . . . . . . 8 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
85 un0 3967 . . . . . . . 8 ( 𝐴 ∪ ∅) = 𝐴
8683, 84, 853eqtri 2648 . . . . . . 7 (𝐴 ∪ {∅}) = 𝐴
8786eleq1i 2692 . . . . . 6 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ 𝐴 ∈ (𝐴 ∪ {∅}))
88 elun 3753 . . . . . 6 ( 𝐴 ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 ∈ {∅}))
8965elsn2 4211 . . . . . . 7 ( 𝐴 ∈ {∅} ↔ 𝐴 = ∅)
9089orbi2i 541 . . . . . 6 (( 𝐴𝐴 𝐴 ∈ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9187, 88, 903bitri 286 . . . . 5 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9282, 91sylnibr 319 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}))
93 unieq 4444 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
94 id 22 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
9593, 94eleq12d 2695 . . . . 5 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ( ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9695notbid 308 . . . 4 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → (¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9792, 96syl5ibrcom 237 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})))
9854, 97mpd 15 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
9950, 98pm2.65da 600 1 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   Or wor 5034  ran crn 5115  suc csuc 5725  wf 5884  cfv 5888   [] crpss 6936  ωcom 7065  cdom 7953  Fincfn 7955  FinIIIcfin3 9103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-rpss 6937  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-fin4 9109  df-fin3 9110
This theorem is referenced by:  fin1a2s  9236
  Copyright terms: Public domain W3C validator