| Step | Hyp | Ref
| Expression |
| 1 | | pwexg 4850 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 2 | 1 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V) |
| 3 | | pwexg 4850 |
. . 3
⊢
(𝒫 𝐴 ∈
V → 𝒫 𝒫 𝐴 ∈ V) |
| 4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫
𝐴 ∈
V) |
| 5 | | ssrab2 3687 |
. . . . 5
⊢ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴 |
| 6 | | elpw2g 4827 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
V → ({𝑑 ∈
𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
| 7 | 2, 6 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
| 8 | 5, 7 | mpbiri 248 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴) |
| 9 | 8 | a1d 25 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴)) |
| 10 | | isinf 8173 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin →
∀𝑏 ∈ ω
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
| 11 | 10 | r19.21bi 2932 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑏 ∈ ω) →
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
| 12 | 11 | ad2ant2lr 784 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
| 13 | | selpw 4165 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝒫 𝐴 ↔ 𝑒 ⊆ 𝐴) |
| 14 | 13 | biimpri 218 |
. . . . . . . . . 10
⊢ (𝑒 ⊆ 𝐴 → 𝑒 ∈ 𝒫 𝐴) |
| 15 | 14 | anim1i 592 |
. . . . . . . . 9
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
| 16 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑏 ↔ 𝑒 ≈ 𝑏)) |
| 17 | 16 | elrab 3363 |
. . . . . . . . 9
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
| 18 | 15, 17 | sylibr 224 |
. . . . . . . 8
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
| 19 | 18 | eximi 1762 |
. . . . . . 7
⊢
(∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
| 20 | 12, 19 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
| 21 | | eleq2 2690 |
. . . . . . . . 9
⊢ ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
| 22 | 21 | biimpcd 239 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
| 23 | 22 | adantl 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
| 24 | 17 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → 𝑒 ≈ 𝑏) |
| 25 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑐 ↔ 𝑒 ≈ 𝑐)) |
| 26 | 25 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑐)) |
| 27 | 26 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ≈ 𝑐) |
| 28 | | ensym 8005 |
. . . . . . . . . . 11
⊢ (𝑒 ≈ 𝑏 → 𝑏 ≈ 𝑒) |
| 29 | | entr 8008 |
. . . . . . . . . . 11
⊢ ((𝑏 ≈ 𝑒 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
| 30 | 28, 29 | sylan 488 |
. . . . . . . . . 10
⊢ ((𝑒 ≈ 𝑏 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
| 31 | 24, 27, 30 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) → 𝑏 ≈ 𝑐) |
| 32 | 31 | ex 450 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
| 33 | 32 | adantl 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
| 34 | | nneneq 8143 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 ↔ 𝑏 = 𝑐)) |
| 35 | 34 | biimpd 219 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
| 36 | 35 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
| 37 | 23, 33, 36 | 3syld 60 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
| 38 | 20, 37 | exlimddv 1863 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
| 39 | | breq2 4657 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (𝑑 ≈ 𝑏 ↔ 𝑑 ≈ 𝑐)) |
| 40 | 39 | rabbidv 3189 |
. . . . 5
⊢ (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) |
| 41 | 38, 40 | impbid1 215 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐)) |
| 42 | 41 | ex 450 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐))) |
| 43 | 9, 42 | dom2d 7996 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫
𝐴 ∈ V → ω
≼ 𝒫 𝒫 𝐴)) |
| 44 | 4, 43 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼
𝒫 𝒫 𝐴) |