Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp0 Structured version   Visualization version   GIF version

Theorem finxp0 33228
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp0 (𝑈↑↑∅) = ∅

Proof of Theorem finxp0
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . . 5 ∅ ∈ V
2 vex 3203 . . . . 5 𝑦 ∈ V
31, 2opnzi 4943 . . . 4 ⟨∅, 𝑦⟩ ≠ ∅
43nesymi 2851 . . 3 ¬ ∅ = ⟨∅, 𝑦
5 peano1 7085 . . . . 5 ∅ ∈ ω
6 df-finxp 33221 . . . . . 6 (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))}
76abeq2i 2735 . . . . 5 (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅)))
85, 7mpbiran 953 . . . 4 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))
9 opex 4932 . . . . . 6 ⟨∅, 𝑦⟩ ∈ V
109rdg0 7517 . . . . 5 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) = ⟨∅, 𝑦
1110eqeq2i 2634 . . . 4 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) ↔ ∅ = ⟨∅, 𝑦⟩)
128, 11bitri 264 . . 3 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = ⟨∅, 𝑦⟩)
134, 12mtbir 313 . 2 ¬ 𝑦 ∈ (𝑈↑↑∅)
1413nel0 3932 1 (𝑈↑↑∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  ifcif 4086  cop 4183   cuni 4436   × cxp 5112  cfv 5888  cmpt2 6652  ωcom 7065  1st c1st 7166  reccrdg 7505  1𝑜c1o 7553  ↑↑cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-finxp 33221
This theorem is referenced by:  finxp00  33239
  Copyright terms: Public domain W3C validator