![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp0 | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp0 | ⊢ (𝑈↑↑∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4790 | . . . . 5 ⊢ ∅ ∈ V | |
2 | vex 3203 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 4943 | . . . 4 ⊢ 〈∅, 𝑦〉 ≠ ∅ |
4 | 3 | nesymi 2851 | . . 3 ⊢ ¬ ∅ = 〈∅, 𝑦〉 |
5 | peano1 7085 | . . . . 5 ⊢ ∅ ∈ ω | |
6 | df-finxp 33221 | . . . . . 6 ⊢ (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))} | |
7 | 6 | abeq2i 2735 | . . . . 5 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))) |
8 | 5, 7 | mpbiran 953 | . . . 4 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅)) |
9 | opex 4932 | . . . . . 6 ⊢ 〈∅, 𝑦〉 ∈ V | |
10 | 9 | rdg0 7517 | . . . . 5 ⊢ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) = 〈∅, 𝑦〉 |
11 | 10 | eqeq2i 2634 | . . . 4 ⊢ (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) ↔ ∅ = 〈∅, 𝑦〉) |
12 | 8, 11 | bitri 264 | . . 3 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = 〈∅, 𝑦〉) |
13 | 4, 12 | mtbir 313 | . 2 ⊢ ¬ 𝑦 ∈ (𝑈↑↑∅) |
14 | 13 | nel0 3932 | 1 ⊢ (𝑈↑↑∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 ifcif 4086 〈cop 4183 ∪ cuni 4436 × cxp 5112 ‘cfv 5888 ↦ cmpt2 6652 ωcom 7065 1st c1st 7166 reccrdg 7505 1𝑜c1o 7553 ↑↑cfinxp 33220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-finxp 33221 |
This theorem is referenced by: finxp00 33239 |
Copyright terms: Public domain | W3C validator |