Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   GIF version

Theorem finxp00 33239
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00 (∅↑↑𝑁) = ∅

Proof of Theorem finxp00
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 33224 . . . 4 (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅))
21eqeq1d 2624 . . 3 (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅))
3 finxpeq2 33224 . . . 4 (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚))
43eqeq1d 2624 . . 3 (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅))
5 finxpeq2 33224 . . . 4 (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚))
65eqeq1d 2624 . . 3 (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅))
7 finxpeq2 33224 . . . 4 (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁))
87eqeq1d 2624 . . 3 (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅))
9 finxp0 33228 . . 3 (∅↑↑∅) = ∅
10 suceq 5790 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
11 df-1o 7560 . . . . . . . . 9 1𝑜 = suc ∅
1210, 11syl6eqr 2674 . . . . . . . 8 (𝑚 = ∅ → suc 𝑚 = 1𝑜)
13 finxpeq2 33224 . . . . . . . 8 (suc 𝑚 = 1𝑜 → (∅↑↑suc 𝑚) = (∅↑↑1𝑜))
1412, 13syl 17 . . . . . . 7 (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1𝑜))
15 finxp1o 33229 . . . . . . 7 (∅↑↑1𝑜) = ∅
1614, 15syl6eq 2672 . . . . . 6 (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅)
1716adantl 482 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅)
18 finxpsuc 33235 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅))
19 xp0 5552 . . . . . 6 ((∅↑↑𝑚) × ∅) = ∅
2018, 19syl6eq 2672 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅)
2117, 20pm2.61dane 2881 . . . 4 (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅)
2221a1d 25 . . 3 (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅))
232, 4, 6, 8, 9, 22finds 7092 . 2 (𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
24 finxpnom 33238 . 2 𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
2523, 24pm2.61i 176 1 (∅↑↑𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wne 2794  c0 3915   × cxp 5112  suc csuc 5725  ωcom 7065  1𝑜c1o 7553  ↑↑cfinxp 33220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-finxp 33221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator