MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupg Structured version   Visualization version   GIF version

Theorem fisupg 8208
Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fisupg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fisupg
StepHypRef Expression
1 fimaxg 8207 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
2 sotrieq2 5063 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)))
32simprbda 653 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑥𝑅𝑦)
43ex 450 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
54anassrs 680 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
65a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
7 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → 𝑦𝑅𝑥))
8 so2nr 5059 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
9 pm3.21 464 . . . . . . . . . . 11 (𝑦𝑅𝑥 → (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
109con3d 148 . . . . . . . . . 10 (𝑦𝑅𝑥 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
118, 10syl5com 31 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
1211anassrs 680 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
137, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
146, 13pm2.61dne 2880 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
1514ralimdva 2962 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
16 breq2 4657 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1716rspcev 3309 . . . . . . . 8 ((𝑥𝐴𝑦𝑅𝑥) → ∃𝑧𝐴 𝑦𝑅𝑧)
1817ex 450 . . . . . . 7 (𝑥𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
1918ralrimivw 2967 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2019adantl 482 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2115, 20jctird 567 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
2221reximdva 3017 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
23223ad2ant1 1082 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915   class class class wbr 4653   Or wor 5034  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  fisup2g  8374  fisupcl  8375  rencldnfilem  37384
  Copyright terms: Public domain W3C validator