![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmid | Structured version Visualization version GIF version |
Description: The filter map applied to the identity. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
fmid | ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 21652 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | f1oi 6174 | . . . . 5 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6144 | . . . . 5 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | eqid 2622 | . . . . 5 ⊢ (𝑋filGen𝐹) = (𝑋filGen𝐹) | |
6 | 5 | elfm3 21754 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
7 | 1, 4, 6 | sylancl 694 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ ∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
8 | fgfil 21679 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹) | |
9 | 8 | rexeqdv 3145 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ (𝑋filGen𝐹)𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠))) |
10 | filelss 21656 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | |
11 | resiima 5480 | . . . . . . . 8 ⊢ (𝑠 ⊆ 𝑋 → (( I ↾ 𝑋) “ 𝑠) = 𝑠) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (( I ↾ 𝑋) “ 𝑠) = 𝑠) |
13 | 12 | eqeq2d 2632 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 = 𝑠)) |
14 | equcom 1945 | . . . . . 6 ⊢ (𝑠 = 𝑡 ↔ 𝑡 = 𝑠) | |
15 | 13, 14 | syl6bbr 278 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → (𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑠 = 𝑡)) |
16 | 15 | rexbidva 3049 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡)) |
17 | risset 3062 | . . . 4 ⊢ (𝑡 ∈ 𝐹 ↔ ∃𝑠 ∈ 𝐹 𝑠 = 𝑡) | |
18 | 16, 17 | syl6bbr 278 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑠 ∈ 𝐹 𝑡 = (( I ↾ 𝑋) “ 𝑠) ↔ 𝑡 ∈ 𝐹)) |
19 | 7, 9, 18 | 3bitrd 294 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑡 ∈ ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) ↔ 𝑡 ∈ 𝐹)) |
20 | 19 | eqrdv 2620 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 FilMap ( I ↾ 𝑋))‘𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 ⊆ wss 3574 I cid 5023 ↾ cres 5116 “ cima 5117 –onto→wfo 5886 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 fBascfbas 19734 filGencfg 19735 Filcfil 21649 FilMap cfm 21737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-fbas 19743 df-fg 19744 df-fil 21650 df-fm 21742 |
This theorem is referenced by: ufldom 21766 |
Copyright terms: Public domain | W3C validator |