| Step | Hyp | Ref
| Expression |
| 1 | | cvmliftmoi.g |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
| 2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) |
| 3 | 2 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ((𝐹 ∘ 𝑀)‘𝑅) = ((𝐹 ∘ 𝑁)‘𝑅)) |
| 4 | | cvmliftmolem.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ 𝑊)) |
| 5 | | cvmliftmolem.8 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝐼) |
| 6 | 4, 5 | sseldd 3604 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ (◡𝑀 “ 𝑊)) |
| 7 | | cvmliftmoi.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) |
| 8 | | cvmliftmo.y |
. . . . . . . . . . . . . . 15
⊢ 𝑌 = ∪
𝐾 |
| 9 | | cvmliftmo.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = ∪
𝐶 |
| 10 | 8, 9 | cnf 21050 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (𝐾 Cn 𝐶) → 𝑀:𝑌⟶𝐵) |
| 11 | 7, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:𝑌⟶𝐵) |
| 12 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑀:𝑌⟶𝐵 → 𝑀 Fn 𝑌) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 Fn 𝑌) |
| 14 | | elpreima 6337 |
. . . . . . . . . . . 12
⊢ (𝑀 Fn 𝑌 → (𝑅 ∈ (◡𝑀 “ 𝑊) ↔ (𝑅 ∈ 𝑌 ∧ (𝑀‘𝑅) ∈ 𝑊))) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ∈ (◡𝑀 “ 𝑊) ↔ (𝑅 ∈ 𝑌 ∧ (𝑀‘𝑅) ∈ 𝑊))) |
| 16 | 15 | simprbda 653 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑅 ∈ (◡𝑀 “ 𝑊)) → 𝑅 ∈ 𝑌) |
| 17 | 6, 16 | syldan 487 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝑌) |
| 18 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝑀:𝑌⟶𝐵 ∧ 𝑅 ∈ 𝑌) → ((𝐹 ∘ 𝑀)‘𝑅) = (𝐹‘(𝑀‘𝑅))) |
| 19 | 11, 18 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∈ 𝑌) → ((𝐹 ∘ 𝑀)‘𝑅) = (𝐹‘(𝑀‘𝑅))) |
| 20 | 17, 19 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ((𝐹 ∘ 𝑀)‘𝑅) = (𝐹‘(𝑀‘𝑅))) |
| 21 | | cvmliftmoi.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) |
| 22 | 8, 9 | cnf 21050 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (𝐾 Cn 𝐶) → 𝑁:𝑌⟶𝐵) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁:𝑌⟶𝐵) |
| 24 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝑁:𝑌⟶𝐵 ∧ 𝑅 ∈ 𝑌) → ((𝐹 ∘ 𝑁)‘𝑅) = (𝐹‘(𝑁‘𝑅))) |
| 25 | 23, 24 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∈ 𝑌) → ((𝐹 ∘ 𝑁)‘𝑅) = (𝐹‘(𝑁‘𝑅))) |
| 26 | 17, 25 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ((𝐹 ∘ 𝑁)‘𝑅) = (𝐹‘(𝑁‘𝑅))) |
| 27 | 3, 20, 26 | 3eqtr3d 2664 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → (𝐹‘(𝑀‘𝑅)) = (𝐹‘(𝑁‘𝑅))) |
| 28 | 27 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝐹‘(𝑀‘𝑅)) = (𝐹‘(𝑁‘𝑅))) |
| 29 | 15 | simplbda 654 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∈ (◡𝑀 “ 𝑊)) → (𝑀‘𝑅) ∈ 𝑊) |
| 30 | 6, 29 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (𝑀‘𝑅) ∈ 𝑊) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑀‘𝑅) ∈ 𝑊) |
| 32 | | fvres 6207 |
. . . . . . 7
⊢ ((𝑀‘𝑅) ∈ 𝑊 → ((𝐹 ↾ 𝑊)‘(𝑀‘𝑅)) = (𝐹‘(𝑀‘𝑅))) |
| 33 | 31, 32 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝐹 ↾ 𝑊)‘(𝑀‘𝑅)) = (𝐹‘(𝑀‘𝑅))) |
| 34 | 5 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝑅 ∈ 𝐼) |
| 35 | | fvres 6207 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐼 → ((𝑁 ↾ 𝐼)‘𝑅) = (𝑁‘𝑅)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝑁 ↾ 𝐼)‘𝑅) = (𝑁‘𝑅)) |
| 37 | | eqid 2622 |
. . . . . . . . . . 11
⊢ ∪ (𝐾
↾t 𝐼) =
∪ (𝐾 ↾t 𝐼) |
| 38 | | cvmliftmolem.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (𝐾 ↾t 𝐼) ∈ Conn) |
| 39 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝐾 ↾t 𝐼) ∈ Conn) |
| 40 | 21 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝑁 ∈ (𝐾 Cn 𝐶)) |
| 41 | | cnvimass 5485 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝑀 “ 𝑊) ⊆ dom 𝑀 |
| 42 | | fdm 6051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀:𝑌⟶𝐵 → dom 𝑀 = 𝑌) |
| 43 | 11, 42 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝑀 = 𝑌) |
| 44 | 41, 43 | syl5sseq 3653 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (◡𝑀 “ 𝑊) ⊆ 𝑌) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → (◡𝑀 “ 𝑊) ⊆ 𝑌) |
| 46 | 4, 45 | sstrd 3613 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ 𝑌) |
| 47 | 8 | cnrest 21089 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ (𝐾 Cn 𝐶) ∧ 𝐼 ⊆ 𝑌) → (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn 𝐶)) |
| 48 | 40, 46, 47 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn 𝐶)) |
| 49 | | cvmliftmo.f |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 51 | | cvmtop1 31242 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ Top) |
| 53 | 9 | toptopon 20722 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵)) |
| 54 | 52, 53 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐶 ∈ (TopOn‘𝐵)) |
| 55 | | df-ima 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 “ 𝐼) = ran (𝑁 ↾ 𝐼) |
| 56 | | cvmliftmolem.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝑇) |
| 57 | | elssuni 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ 𝑇 → 𝑊 ⊆ ∪ 𝑇) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ ∪ 𝑇) |
| 59 | | cvmliftmolem.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ (𝑆‘𝑈)) |
| 60 | | cvmliftmolem.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| 61 | 60 | cvmsuni 31251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
| 62 | 59, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝜓) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) |
| 63 | 58, 62 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (◡𝐹 “ 𝑈)) |
| 64 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ⊆ (◡𝐹 “ 𝑈) → (◡𝑀 “ 𝑊) ⊆ (◡𝑀 “ (◡𝐹 “ 𝑈))) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → (◡𝑀 “ 𝑊) ⊆ (◡𝑀 “ (◡𝐹 “ 𝑈))) |
| 66 | 4, 65 | sstrd 3613 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ (◡𝐹 “ 𝑈))) |
| 67 | 2 | cnveqd 5298 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝜓) → ◡(𝐹 ∘ 𝑀) = ◡(𝐹 ∘ 𝑁)) |
| 68 | | cnvco 5308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ◡(𝐹 ∘ 𝑀) = (◡𝑀 ∘ ◡𝐹) |
| 69 | | cnvco 5308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ◡(𝐹 ∘ 𝑁) = (◡𝑁 ∘ ◡𝐹) |
| 70 | 67, 68, 69 | 3eqtr3g 2679 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝜓) → (◡𝑀 ∘ ◡𝐹) = (◡𝑁 ∘ ◡𝐹)) |
| 71 | 70 | imaeq1d 5465 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → ((◡𝑀 ∘ ◡𝐹) “ 𝑈) = ((◡𝑁 ∘ ◡𝐹) “ 𝑈)) |
| 72 | | imaco 5640 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑀 ∘ ◡𝐹) “ 𝑈) = (◡𝑀 “ (◡𝐹 “ 𝑈)) |
| 73 | | imaco 5640 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑁 ∘ ◡𝐹) “ 𝑈) = (◡𝑁 “ (◡𝐹 “ 𝑈)) |
| 74 | 71, 72, 73 | 3eqtr3g 2679 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (◡𝑀 “ (◡𝐹 “ 𝑈)) = (◡𝑁 “ (◡𝐹 “ 𝑈))) |
| 75 | 66, 74 | sseqtrd 3641 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑁 “ (◡𝐹 “ 𝑈))) |
| 76 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → 𝑁:𝑌⟶𝐵) |
| 77 | | ffun 6048 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁:𝑌⟶𝐵 → Fun 𝑁) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → Fun 𝑁) |
| 79 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁:𝑌⟶𝐵 → dom 𝑁 = 𝑌) |
| 80 | 76, 79 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → dom 𝑁 = 𝑌) |
| 81 | 46, 80 | sseqtr4d 3642 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ dom 𝑁) |
| 82 | | funimass3 6333 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝑁 ∧ 𝐼 ⊆ dom 𝑁) → ((𝑁 “ 𝐼) ⊆ (◡𝐹 “ 𝑈) ↔ 𝐼 ⊆ (◡𝑁 “ (◡𝐹 “ 𝑈)))) |
| 83 | 78, 81, 82 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 “ 𝐼) ⊆ (◡𝐹 “ 𝑈) ↔ 𝐼 ⊆ (◡𝑁 “ (◡𝐹 “ 𝑈)))) |
| 84 | 75, 83 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → (𝑁 “ 𝐼) ⊆ (◡𝐹 “ 𝑈)) |
| 85 | 55, 84 | syl5eqssr 3650 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → ran (𝑁 ↾ 𝐼) ⊆ (◡𝐹 “ 𝑈)) |
| 86 | | cnvimass 5485 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐹 “ 𝑈) ⊆ dom 𝐹 |
| 87 | | cvmcn 31244 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 88 | 49, 87 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ (𝐶 Cn 𝐽)) |
| 89 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 90 | 9, 89 | cnf 21050 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
| 91 | 88, 90 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝐵⟶∪ 𝐽) |
| 92 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐵⟶∪ 𝐽 → dom 𝐹 = 𝐵) |
| 93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐹 = 𝐵) |
| 94 | 93 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → dom 𝐹 = 𝐵) |
| 95 | 86, 94 | syl5sseq 3653 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (◡𝐹 “ 𝑈) ⊆ 𝐵) |
| 96 | | cnrest2 21090 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝑁 ↾ 𝐼) ⊆ (◡𝐹 “ 𝑈) ∧ (◡𝐹 “ 𝑈) ⊆ 𝐵) → ((𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn 𝐶) ↔ (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn (𝐶 ↾t (◡𝐹 “ 𝑈))))) |
| 97 | 54, 85, 95, 96 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn 𝐶) ↔ (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn (𝐶 ↾t (◡𝐹 “ 𝑈))))) |
| 98 | 48, 97 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn (𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 99 | 98 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑁 ↾ 𝐼) ∈ ((𝐾 ↾t 𝐼) Cn (𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 100 | | df-ss 3588 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ⊆ (◡𝐹 “ 𝑈) ↔ (𝑊 ∩ (◡𝐹 “ 𝑈)) = 𝑊) |
| 101 | 63, 100 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (𝑊 ∩ (◡𝐹 “ 𝑈)) = 𝑊) |
| 102 | 9 | topopn 20711 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ Top → 𝐵 ∈ 𝐶) |
| 103 | 52, 102 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 𝐵 ∈ 𝐶) |
| 104 | 103, 95 | ssexd 4805 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (◡𝐹 “ 𝑈) ∈ V) |
| 105 | 60 | cvmsss 31249 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) |
| 106 | 59, 105 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 𝑇 ⊆ 𝐶) |
| 107 | 106, 56 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝐶) |
| 108 | | elrestr 16089 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑈) ∈ V ∧ 𝑊 ∈ 𝐶) → (𝑊 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 109 | 52, 104, 107, 108 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (𝑊 ∩ (◡𝐹 “ 𝑈)) ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 110 | 101, 109 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 111 | 110 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑈))) |
| 112 | 60 | cvmscld 31255 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝑊 ∈ 𝑇) → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 113 | 50, 59, 56, 112 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 114 | 113 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) |
| 115 | | cvmliftmolem.7 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝐼) |
| 116 | | cvmliftmo.k |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ Conn) |
| 117 | | conntop 21220 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ Conn → 𝐾 ∈ Top) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ Top) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐾 ∈ Top) |
| 120 | 8 | restuni 20966 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝐼 ⊆ 𝑌) → 𝐼 = ∪ (𝐾 ↾t 𝐼)) |
| 121 | 119, 46, 120 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 𝐼 = ∪ (𝐾 ↾t 𝐼)) |
| 122 | 115, 121 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ ∪ (𝐾 ↾t 𝐼)) |
| 123 | 122 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝑄 ∈ ∪ (𝐾 ↾t 𝐼)) |
| 124 | 115 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝑄 ∈ 𝐼) |
| 125 | | fvres 6207 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ 𝐼 → ((𝑁 ↾ 𝐼)‘𝑄) = (𝑁‘𝑄)) |
| 126 | 124, 125 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝑁 ↾ 𝐼)‘𝑄) = (𝑁‘𝑄)) |
| 127 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑀‘𝑄) = (𝑁‘𝑄)) |
| 128 | 4, 115 | sseldd 3604 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ (◡𝑀 “ 𝑊)) |
| 129 | | elpreima 6337 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 Fn 𝑌 → (𝑄 ∈ (◡𝑀 “ 𝑊) ↔ (𝑄 ∈ 𝑌 ∧ (𝑀‘𝑄) ∈ 𝑊))) |
| 130 | 13, 129 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (◡𝑀 “ 𝑊) ↔ (𝑄 ∈ 𝑌 ∧ (𝑀‘𝑄) ∈ 𝑊))) |
| 131 | 130 | simplbda 654 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑄 ∈ (◡𝑀 “ 𝑊)) → (𝑀‘𝑄) ∈ 𝑊) |
| 132 | 128, 131 | syldan 487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (𝑀‘𝑄) ∈ 𝑊) |
| 133 | 132 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑀‘𝑄) ∈ 𝑊) |
| 134 | 127, 133 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑁‘𝑄) ∈ 𝑊) |
| 135 | 126, 134 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝑁 ↾ 𝐼)‘𝑄) ∈ 𝑊) |
| 136 | 37, 39, 99, 111, 114, 123, 135 | conncn 21229 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑁 ↾ 𝐼):∪ (𝐾 ↾t 𝐼)⟶𝑊) |
| 137 | 121 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → 𝐼 = ∪ (𝐾 ↾t 𝐼)) |
| 138 | 137 | feq2d 6031 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝑁 ↾ 𝐼):𝐼⟶𝑊 ↔ (𝑁 ↾ 𝐼):∪ (𝐾 ↾t 𝐼)⟶𝑊)) |
| 139 | 136, 138 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑁 ↾ 𝐼):𝐼⟶𝑊) |
| 140 | 139, 34 | ffvelrnd 6360 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝑁 ↾ 𝐼)‘𝑅) ∈ 𝑊) |
| 141 | 36, 140 | eqeltrrd 2702 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑁‘𝑅) ∈ 𝑊) |
| 142 | | fvres 6207 |
. . . . . . 7
⊢ ((𝑁‘𝑅) ∈ 𝑊 → ((𝐹 ↾ 𝑊)‘(𝑁‘𝑅)) = (𝐹‘(𝑁‘𝑅))) |
| 143 | 141, 142 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝐹 ↾ 𝑊)‘(𝑁‘𝑅)) = (𝐹‘(𝑁‘𝑅))) |
| 144 | 28, 33, 143 | 3eqtr4d 2666 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → ((𝐹 ↾ 𝑊)‘(𝑀‘𝑅)) = ((𝐹 ↾ 𝑊)‘(𝑁‘𝑅))) |
| 145 | 60 | cvmsf1o 31254 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝑊 ∈ 𝑇) → (𝐹 ↾ 𝑊):𝑊–1-1-onto→𝑈) |
| 146 | 50, 59, 56, 145 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ↾ 𝑊):𝑊–1-1-onto→𝑈) |
| 147 | | f1of1 6136 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝑊):𝑊–1-1-onto→𝑈 → (𝐹 ↾ 𝑊):𝑊–1-1→𝑈) |
| 148 | 146, 147 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → (𝐹 ↾ 𝑊):𝑊–1-1→𝑈) |
| 149 | 148 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝐹 ↾ 𝑊):𝑊–1-1→𝑈) |
| 150 | | f1fveq 6519 |
. . . . . 6
⊢ (((𝐹 ↾ 𝑊):𝑊–1-1→𝑈 ∧ ((𝑀‘𝑅) ∈ 𝑊 ∧ (𝑁‘𝑅) ∈ 𝑊)) → (((𝐹 ↾ 𝑊)‘(𝑀‘𝑅)) = ((𝐹 ↾ 𝑊)‘(𝑁‘𝑅)) ↔ (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 151 | 149, 31, 141, 150 | syl12anc 1324 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (((𝐹 ↾ 𝑊)‘(𝑀‘𝑅)) = ((𝐹 ↾ 𝑊)‘(𝑁‘𝑅)) ↔ (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 152 | 144, 151 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑀‘𝑄) = (𝑁‘𝑄)) → (𝑀‘𝑅) = (𝑁‘𝑅)) |
| 153 | 152 | ex 450 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ((𝑀‘𝑄) = (𝑁‘𝑄) → (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 154 | 130 | simprbda 653 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 ∈ (◡𝑀 “ 𝑊)) → 𝑄 ∈ 𝑌) |
| 155 | 128, 154 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝑌) |
| 156 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = 𝑄 → (𝑀‘𝑥) = (𝑀‘𝑄)) |
| 157 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = 𝑄 → (𝑁‘𝑥) = (𝑁‘𝑄)) |
| 158 | 156, 157 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = 𝑄 → ((𝑀‘𝑥) = (𝑁‘𝑥) ↔ (𝑀‘𝑄) = (𝑁‘𝑄))) |
| 159 | 158 | elrab3 3364 |
. . . 4
⊢ (𝑄 ∈ 𝑌 → (𝑄 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑀‘𝑄) = (𝑁‘𝑄))) |
| 160 | 155, 159 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑀‘𝑄) = (𝑁‘𝑄))) |
| 161 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = 𝑅 → (𝑀‘𝑥) = (𝑀‘𝑅)) |
| 162 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = 𝑅 → (𝑁‘𝑥) = (𝑁‘𝑅)) |
| 163 | 161, 162 | eqeq12d 2637 |
. . . . 5
⊢ (𝑥 = 𝑅 → ((𝑀‘𝑥) = (𝑁‘𝑥) ↔ (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 164 | 163 | elrab3 3364 |
. . . 4
⊢ (𝑅 ∈ 𝑌 → (𝑅 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 165 | 17, 164 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝑅 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} ↔ (𝑀‘𝑅) = (𝑁‘𝑅))) |
| 166 | 153, 160,
165 | 3imtr4d 283 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)} → 𝑅 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)})) |
| 167 | | ffn 6045 |
. . . . . 6
⊢ (𝑁:𝑌⟶𝐵 → 𝑁 Fn 𝑌) |
| 168 | 23, 167 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 Fn 𝑌) |
| 169 | | fndmin 6324 |
. . . . 5
⊢ ((𝑀 Fn 𝑌 ∧ 𝑁 Fn 𝑌) → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
| 170 | 13, 168, 169 | syl2anc 693 |
. . . 4
⊢ (𝜑 → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
| 171 | 170 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → dom (𝑀 ∩ 𝑁) = {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)}) |
| 172 | 171 | eleq2d 2687 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑄 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)})) |
| 173 | 171 | eleq2d 2687 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (𝑅 ∈ dom (𝑀 ∩ 𝑁) ↔ 𝑅 ∈ {𝑥 ∈ 𝑌 ∣ (𝑀‘𝑥) = (𝑁‘𝑥)})) |
| 174 | 166, 172,
173 | 3imtr4d 283 |
1
⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) → 𝑅 ∈ dom (𝑀 ∩ 𝑁))) |