MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmin Structured version   Visualization version   Unicode version

Theorem fndmin 6324
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dffn5 6241 . . . . . . 7  |-  ( F  Fn  A  <->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
21biimpi 206 . . . . . 6  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
3 df-mpt 4730 . . . . . 6  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
42, 3syl6eq 2672 . . . . 5  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
5 dffn5 6241 . . . . . . 7  |-  ( G  Fn  A  <->  G  =  ( x  e.  A  |->  ( G `  x
) ) )
65biimpi 206 . . . . . 6  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
7 df-mpt 4730 . . . . . 6  |-  ( x  e.  A  |->  ( G `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) }
86, 7syl6eq 2672 . . . . 5  |-  ( G  Fn  A  ->  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) } )
94, 8ineqan12d 3816 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } ) )
10 inopab 5252 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) }
119, 10syl6eq 2672 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) } )
1211dmeqd 5326 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) } )
13 19.42v 1918 . . . . 5  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <-> 
( x  e.  A  /\  E. y ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) ) )
14 anandi 871 . . . . . 6  |-  ( ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  ( (
x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
1514exbii 1774 . . . . 5  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
16 fvex 6201 . . . . . . 7  |-  ( F `
 x )  e. 
_V
17 eqeq1 2626 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
y  =  ( G `
 x )  <->  ( F `  x )  =  ( G `  x ) ) )
1816, 17ceqsexv 3242 . . . . . 6  |-  ( E. y ( y  =  ( F `  x
)  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) )
1918anbi2i 730 . . . . 5  |-  ( ( x  e.  A  /\  E. y ( y  =  ( F `  x
)  /\  y  =  ( G `  x ) ) )  <->  ( x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) )
2013, 15, 193bitr3i 290 . . . 4  |-  ( E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) )  <->  ( x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) )
2120abbii 2739 . . 3  |-  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) }
22 dmopab 5335 . . 3  |-  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }
23 df-rab 2921 . . 3  |-  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) }
2421, 22, 233eqtr4i 2654 . 2  |-  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }
2512, 24syl6eq 2672 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916    i^i cin 3573   {copab 4712    |-> cmpt 4729   dom cdm 5114    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fneqeql  6325  fninfp  6440  mhmeql  17364  ghmeql  17683  lmhmeql  19055  hauseqlcld  21449  cvmliftmolem1  31263  cvmliftmolem2  31264  hausgraph  37790  mgmhmeql  41803
  Copyright terms: Public domain W3C validator