MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplit Structured version   Visualization version   Unicode version

Theorem fsplit 7282
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 7281 in order to build compound functions such as  y  =  ( ( sqr `  x
)  +  ( abs `  x ) ). (Contributed by NM, 17-Sep-2007.)
Assertion
Ref Expression
fsplit  |-  `' ( 1st  |`  _I  )  =  ( x  e. 
_V  |->  <. x ,  x >. )

Proof of Theorem fsplit
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5  |-  x  e. 
_V
2 vex 3203 . . . . 5  |-  y  e. 
_V
31, 2brcnv 5305 . . . 4  |-  ( x `' ( 1st  |`  _I  )
y  <->  y ( 1st  |`  _I  ) x )
41brres 5402 . . . . 5  |-  ( y ( 1st  |`  _I  )
x  <->  ( y 1st x  /\  y  e.  _I  ) )
5 19.42v 1918 . . . . . . 7  |-  ( E. z ( ( 1st `  y )  =  x  /\  y  =  <. z ,  z >. )  <->  ( ( 1st `  y
)  =  x  /\  E. z  y  =  <. z ,  z >. )
)
6 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
76, 6op1std 7178 . . . . . . . . . 10  |-  ( y  =  <. z ,  z
>.  ->  ( 1st `  y
)  =  z )
87eqeq1d 2624 . . . . . . . . 9  |-  ( y  =  <. z ,  z
>.  ->  ( ( 1st `  y )  =  x  <-> 
z  =  x ) )
98pm5.32ri 670 . . . . . . . 8  |-  ( ( ( 1st `  y
)  =  x  /\  y  =  <. z ,  z >. )  <->  ( z  =  x  /\  y  =  <. z ,  z
>. ) )
109exbii 1774 . . . . . . 7  |-  ( E. z ( ( 1st `  y )  =  x  /\  y  =  <. z ,  z >. )  <->  E. z ( z  =  x  /\  y  = 
<. z ,  z >.
) )
11 fo1st 7188 . . . . . . . . . 10  |-  1st : _V -onto-> _V
12 fofn 6117 . . . . . . . . . 10  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1311, 12ax-mp 5 . . . . . . . . 9  |-  1st  Fn  _V
14 fnbrfvb 6236 . . . . . . . . 9  |-  ( ( 1st  Fn  _V  /\  y  e.  _V )  ->  ( ( 1st `  y
)  =  x  <->  y 1st x ) )
1513, 2, 14mp2an 708 . . . . . . . 8  |-  ( ( 1st `  y )  =  x  <->  y 1st x )
16 dfid2 5027 . . . . . . . . . 10  |-  _I  =  { <. z ,  z
>.  |  z  =  z }
1716eleq2i 2693 . . . . . . . . 9  |-  ( y  e.  _I  <->  y  e.  {
<. z ,  z >.  |  z  =  z } )
18 nfe1 2027 . . . . . . . . . . 11  |-  F/ z E. z ( y  =  <. z ,  z
>.  /\  z  =  z )
191819.9 2072 . . . . . . . . . 10  |-  ( E. z E. z ( y  =  <. z ,  z >.  /\  z  =  z )  <->  E. z
( y  =  <. z ,  z >.  /\  z  =  z ) )
20 elopab 4983 . . . . . . . . . 10  |-  ( y  e.  { <. z ,  z >.  |  z  =  z }  <->  E. z E. z ( y  = 
<. z ,  z >.  /\  z  =  z
) )
21 equid 1939 . . . . . . . . . . . 12  |-  z  =  z
2221biantru 526 . . . . . . . . . . 11  |-  ( y  =  <. z ,  z
>. 
<->  ( y  =  <. z ,  z >.  /\  z  =  z ) )
2322exbii 1774 . . . . . . . . . 10  |-  ( E. z  y  =  <. z ,  z >.  <->  E. z
( y  =  <. z ,  z >.  /\  z  =  z ) )
2419, 20, 233bitr4i 292 . . . . . . . . 9  |-  ( y  e.  { <. z ,  z >.  |  z  =  z }  <->  E. z 
y  =  <. z ,  z >. )
2517, 24bitr2i 265 . . . . . . . 8  |-  ( E. z  y  =  <. z ,  z >.  <->  y  e.  _I  )
2615, 25anbi12i 733 . . . . . . 7  |-  ( ( ( 1st `  y
)  =  x  /\  E. z  y  =  <. z ,  z >. )  <->  ( y 1st x  /\  y  e.  _I  )
)
275, 10, 263bitr3ri 291 . . . . . 6  |-  ( ( y 1st x  /\  y  e.  _I  )  <->  E. z ( z  =  x  /\  y  = 
<. z ,  z >.
) )
28 id 22 . . . . . . . . 9  |-  ( z  =  x  ->  z  =  x )
2928, 28opeq12d 4410 . . . . . . . 8  |-  ( z  =  x  ->  <. z ,  z >.  =  <. x ,  x >. )
3029eqeq2d 2632 . . . . . . 7  |-  ( z  =  x  ->  (
y  =  <. z ,  z >.  <->  y  =  <. x ,  x >. ) )
311, 30ceqsexv 3242 . . . . . 6  |-  ( E. z ( z  =  x  /\  y  = 
<. z ,  z >.
)  <->  y  =  <. x ,  x >. )
3227, 31bitri 264 . . . . 5  |-  ( ( y 1st x  /\  y  e.  _I  )  <->  y  =  <. x ,  x >. )
334, 32bitri 264 . . . 4  |-  ( y ( 1st  |`  _I  )
x  <->  y  =  <. x ,  x >. )
343, 33bitri 264 . . 3  |-  ( x `' ( 1st  |`  _I  )
y  <->  y  =  <. x ,  x >. )
3534opabbii 4717 . 2  |-  { <. x ,  y >.  |  x `' ( 1st  |`  _I  )
y }  =  { <. x ,  y >.  |  y  =  <. x ,  x >. }
36 relcnv 5503 . . 3  |-  Rel  `' ( 1st  |`  _I  )
37 dfrel4v 5584 . . 3  |-  ( Rel  `' ( 1st  |`  _I  )  <->  `' ( 1st  |`  _I  )  =  { <. x ,  y
>.  |  x `' ( 1st  |`  _I  )
y } )
3836, 37mpbi 220 . 2  |-  `' ( 1st  |`  _I  )  =  { <. x ,  y
>.  |  x `' ( 1st  |`  _I  )
y }
39 mptv 4751 . 2  |-  ( x  e.  _V  |->  <. x ,  x >. )  =  { <. x ,  y >.  |  y  =  <. x ,  x >. }
4035, 38, 393eqtr4i 2654 1  |-  `' ( 1st  |`  _I  )  =  ( x  e. 
_V  |->  <. x ,  x >. )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116   Rel wrel 5119    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888   1stc1st 7166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator