| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsplit | Structured version Visualization version Unicode version | ||
| Description: A function that can be
used to feed a common value to both operands of
an operation. Use as the second argument of a composition with the
function of fpar 7281 in order to build compound functions such as
|
| Ref | Expression |
|---|---|
| fsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . 5
| |
| 2 | vex 3203 |
. . . . 5
| |
| 3 | 1, 2 | brcnv 5305 |
. . . 4
|
| 4 | 1 | brres 5402 |
. . . . 5
|
| 5 | 19.42v 1918 |
. . . . . . 7
| |
| 6 | vex 3203 |
. . . . . . . . . . 11
| |
| 7 | 6, 6 | op1std 7178 |
. . . . . . . . . 10
|
| 8 | 7 | eqeq1d 2624 |
. . . . . . . . 9
|
| 9 | 8 | pm5.32ri 670 |
. . . . . . . 8
|
| 10 | 9 | exbii 1774 |
. . . . . . 7
|
| 11 | fo1st 7188 |
. . . . . . . . . 10
| |
| 12 | fofn 6117 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
|
| 14 | fnbrfvb 6236 |
. . . . . . . . 9
| |
| 15 | 13, 2, 14 | mp2an 708 |
. . . . . . . 8
|
| 16 | dfid2 5027 |
. . . . . . . . . 10
| |
| 17 | 16 | eleq2i 2693 |
. . . . . . . . 9
|
| 18 | nfe1 2027 |
. . . . . . . . . . 11
| |
| 19 | 18 | 19.9 2072 |
. . . . . . . . . 10
|
| 20 | elopab 4983 |
. . . . . . . . . 10
| |
| 21 | equid 1939 |
. . . . . . . . . . . 12
| |
| 22 | 21 | biantru 526 |
. . . . . . . . . . 11
|
| 23 | 22 | exbii 1774 |
. . . . . . . . . 10
|
| 24 | 19, 20, 23 | 3bitr4i 292 |
. . . . . . . . 9
|
| 25 | 17, 24 | bitr2i 265 |
. . . . . . . 8
|
| 26 | 15, 25 | anbi12i 733 |
. . . . . . 7
|
| 27 | 5, 10, 26 | 3bitr3ri 291 |
. . . . . 6
|
| 28 | id 22 |
. . . . . . . . 9
| |
| 29 | 28, 28 | opeq12d 4410 |
. . . . . . . 8
|
| 30 | 29 | eqeq2d 2632 |
. . . . . . 7
|
| 31 | 1, 30 | ceqsexv 3242 |
. . . . . 6
|
| 32 | 27, 31 | bitri 264 |
. . . . 5
|
| 33 | 4, 32 | bitri 264 |
. . . 4
|
| 34 | 3, 33 | bitri 264 |
. . 3
|
| 35 | 34 | opabbii 4717 |
. 2
|
| 36 | relcnv 5503 |
. . 3
| |
| 37 | dfrel4v 5584 |
. . 3
| |
| 38 | 36, 37 | mpbi 220 |
. 2
|
| 39 | mptv 4751 |
. 2
| |
| 40 | 35, 38, 39 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |